Энергетический феномен вакуума

Статья - Физика

Другие статьи по предмету Физика

?оводная передача энергии

В московском научно-исследовательском электротехническом институте С. В. Авраменко демонстрировал передачу переменного тока по одному проводу без заземления [17].

Рис. 5. Схема однопроводной передачи энергии по схеме Авраменко [17].

 

Основу устройства составляла "вилка Авраменко", которая представляет собой два последовательно включенных полупроводниковых диода (рис.5). Если вилку присоединить к проводу, находящемуся под переменным напряжением 10-10000В, то в контуре вилки циркулирует пульсирующий ток, и через некоторое время в разряднике Р наблюдается серия искр. Временной интервал от подключения до разряда зависит от величины емкости С, частоты пульсации и размера зазора Р. Включение в линию передачи резистора номиналом 2-5 МОм не вызывает существенных изменений в работе схемы [17].

Исследуя передачу энергии по одному проводу Авраменко, Заев и Лисин приходят к выводу, что феномен объясняется наличием тока поляризации [17, 18]. По их мнению, величина тока поляризации прямо пропорционально зависит от частоты, диаметра провода обмотки генератора, плотности материала провода, атомного номера материала провода и обратно пропорциональна длине провода обмотки, массовому числу материала провода. Но главная зависимость, по мнению исследователей обратная пропорциональность от разности квадратов частот колебаний резонансной частоты атома материала обмотки и частоты генератора.

Авторы статьи [18] считают необходимым проверить целесообразность изготовления обмоток генератора из проводов медных, никелевых, железных, свинцовых и т. д.

Идея однопроводной передачи электроэнергии заинтересовала многих исследователей. Так в [17] описывается эксперимент Стефана Хартманна, основанный на изобретении Авраменко.

Рис. 6. Схема Стефана Хартманна [17].

В генераторе используется автомобильная катушка зажигания. Электронный генератор работает на частоте 10кГц. В качестве нагрузки используется ксеноновая лампа-вспышка, медный провод используется как антенна (рис.6). Генератор переменного напряжения через проводник, длина которого кратна длине стоячей волны электрического поля в нем, связан с "вилкой Авраменко". В случае резонанса амплитуда напряжения в точке подключения "вилки" максимальна. Автор утверждает, что конденсатор заряжается напряжением, которое не влияет на первичный источник энергии. Генератор, по его мнению, является только источником информации. Энергия, выделяющаяся в ксеноновой лампе, определяется частотой и амплитудой колебаний. Поджег лампы осуществляется свободными электронами, текущими через медную антенну. Если убрать антенну, то ксеноновая лампа не горит.

 

3.9. Наши эксперименты по однопроводной передаче энергии.

Авторы настоящей статьи провели эксперименты по передаче электроэнергии по одному проводу. В нашей схеме не использовалась "вилка Авраменко". Вместо "вилки Авраменко" использовалась обычная мостовая схема. Кроме этого мы внесли ряд других изменений в схему Авраменко, что повысило ее эффективность. Схема приведена на рисунке 7.

Общий вид устройства показан на рисунке 8а. Энергией устройство обеспечивает источник питания постоянного тока Б5-47. Нагрузкой служит лампа накаливания 220В 25Вт. На электрической схеме, изображенной на рис. 7, цифрами обозначены: 1 - генератор, 2 - расширитель спектра, 3 - "антенна". Генератор и трансформатор размещены в корпусе из диэлектрика (рис.8б, 8в), диоды, конденсатор, лампа, элементы 2 и 3, составляющие приемник энергии в бело-голубом корпусе под лампой (рис.8).

Рис. 7. Принципиальная схема устройства для однопроводной передачи энергии

Рис. 8. Фотографии экспериментов по однопроводной передаче энергии.

В экспериментах использовались различные лампы накаливания, наилучший результат был достигнут при использовании ламп 220В, 25Вт (рис.8г, 8д). Ключевым моментом в повышении эффективности, по сравнению со схемой Авраменко, является использование стандартной мостовой схемы, а не ее половины, а также наличие расширителя спектра. Наличие в схеме расширителя спектра приводит к тому, что нагрузка, не мешает полному заряду конденсатора. Как следствие, вся приходящая энергия расходуется на зарядку высоковольтного конденсатора с малым током утечки. Цепь при этом замыкается токами смещения на свободный конец вторичной обмотки трансформатора через антенну 3 (рис.7).

 

3.10. Эксперименты с перегоревшими лампами накаливания.

В описанных выше наших экспериментах по однопроводной передаче энергии горят как исправные лампы, так и перегоревшие.

Рис. 9. Фотографии экспериментов с перегоревшими лампами накаливания.

На рисунке 9а виден разрыв спирали лампы накаливания. Рисунки 9б и 9в фотографии экспериментов. Видно свечение спирали и яркая искра в месте разрыва спирали.

Со свечением перегоревших ламп накаливания, не подозревая того, сталкивается практически каждый из нас. Для этого достаточно внимательно присмотреться к перегоревшим лампам. Можно заметить, что лампы часто перегорают в нескольких местах. Вероятность одновременного перегорания лампы в нескольких местах очень мала. Это значит, что лампа, утратив целостность спирали, продолжала светить, пока цепь не разорвалась еще в одном месте. Этот феномен возникает в большинстве случаев перегорания ламп накаливания, питающихся от сети 220В 50Гц.

Мы провели такой эксперимент: подключали станд?/p>