Электрохимическое осаждение пленок

Дипломная работа - Химия

Другие дипломы по предмету Химия




и и т.д.

Все методы нанесения пленок характеризуются такими параметрами, как скорость получения покрытий и диапазон достигаемых толщин. Для РVD и CVD это обычно от 1 до 1000 мкм/час и 10-2-10(100) мкм. Для химических методов - 100-1000 мкм/час и 10-1-1000 мкм; взрывных (детонационных) и плазменных методов - до 10-100 мм/час и 0,1-10 мм соответственно.

К подложкам для получения пленок предъявляются требования, которые можно классифицировать как требования по механическим свойствам (чистота обработки, шероховатость; различные виды механической прочности; твердость; коэффициент термического расширения и др.), по химическим свойствам (устойчивость подложек к процессам их чистки перед нанесением пленок; индифферентность по отношению к материалу пленки в ходе её нанесения и эксплуатации или наоборот способность к необходимому для получения заданных свойств композиции химическому взаимодействию с пленкой, т.е. образованию твердых растворов, поверхностных фаз и пр.), по физическим свойствам (температура плавления, рекристаллизации, которые не должны как правило происходить в ходе термообработки пленок), кристаллографическим характеристикам (для получения качественных ориентированных покрытий чаще всего необходимо достаточно близкое совпадение параметров кристаллической решетки подложки и пленки).

Подложки при нанесении пленок оказывают не только кристаллографическое ориентирующее действие, но и топологическое, связанное с кривизной поверхностных неровностей подложек. Т.к. над выпуклой поверхностью микровыступов давление паров выше, а кристаллиты новой фазы могут иметь ось быстрого роста, то при конденсации вещества кристаллиты могут быть ориентированы одной из своих кристаллографических осей по нормали к этим локальным выступам рельефа (Рисунок 5а.). Аналогичным образом может происходить рост кристаллитов при наличии жидкой фазы. Поскольку в соответствии с уравнение Кельвина ln(C1/C)=2s жидк.-тв./r крист.RTr1 растворимость более мелких кристаллитов (С1) c радиусом r1 выше, то эти вновь возникающие частицы с различной ориентацией могут поставлять материал для преимущественного роста уже сориентированных более крупных соседей. Данное явление используют практически для синтеза текстурированных или даже близких к эпитаксиальным пленок. Получение кристаллографической ориентации на искусственно созданных микрошероховатостях заданного профиля на подложках получило название графоэпитаксии (Рисунок 5б.).

Рисунок 5. Примеры ориентации кристаллитов и графоэпитаксии сложнооксидной пленки

а - кристаллиты

ориентированы

б - пример

графоэпитаксии

Физикохимия получения пленочных покрытий

Получение пленочных покрытий сопровождается рядом специфических явлений, из них следует выделить последовательность процессов формирования пленок, в частности конденсационных:

1.Процесс получения пленок начинается с осаждения (адсорбции) т.н. адатомов. В условиях равновесия с газовой средой количество сорбируемых в единицу времени атомов, молекул или ионов равно количеству десорбируемых. Местами на поверхности подложки, где в первую очередь происходит сорбция, являются участки локальных энергетических максимумов, например, узлы кристаллической решетки, что приводит к наиболее существенному выигрышу уменьшения свободной энергии поверхности. Силами, удерживающими частицы, могут быть в зависимости от их природы и характера поверхности дисперсионные взаимодействия Ван-дер-Ваальса, химические - ковалентные или ионные. Адатомы могут быть как фиксированными (при высоких энергиях связи с подложкой), так и подвижными, т.е. перемещаться от одного локального энергетического максимума к другому за iет градиента, например, химического потенциала. Последнее явление облегчает протекание последующих стадий образования пленки.

2.Далее возникают за iет ассоциации нескольких адатомов двухмерные островковые неструктурные образования, которые также в принципе могут обладать подвижностью. В условиях равновесия могут иметься докритические и сверхкритические островки, первые из которых растворяются и переходят в отдельные адатомы или десорбируются, вторые способны к дальнейшему росту.

.Происходит коалеiенция островков с образованием структурных зародышей, например, 4х4, 5х5 и т.д. узлов кристаллической решетки новой фазы. По различным теоретическим представлением размер структурных зародышей довольно значительно различается.

.Образуются каналы свободной поверхности подложки за iет смыкания между собой структурных зародышей с дальнейшим формированием кристаллической структуры покрытия (Рисунок 6.).

.Возникают отдельные поверхностные поры без покрытия, которые перекрываются в последнюю очередь с образованием сплошной пленки.

6.Происходит конденсация последующих слоев пленки, которая в конечном итоге при продолжении процесса переходит в трехмерное образование. На этом этапе последующие слои осаждаются, в принципе подчиняясь тем же закономерностям, что и первичные.

а б

в г

Рисунок 6. Стадии заполнения поверхности подложки оксидом меди при пиролизе раствора нитрат меди - поливиниловый спирт (600оС, 100х)

В процессе образования зародышей новой ф?/p>