Электронно-лучевая сварка деталей гироскопа
Дипломная работа - Разное
Другие дипломы по предмету Разное
роцесса лазерной сварки газовым лазером приведена на рисунке 1.8.
Рис.1.8 Лазерная сварка газовым лазером, схема процесса
Лазерная сварка производится в атмосферных условиях, без создания вакуума, необходима защита расплавленного металла от воздуха. Обычно для защиты используются газы, в частности аргон. Особенностью процесса лазерной сварки является то, что вследствие высокой тепловой мощности луча на поверхности свариваемого изделия происходит интенсивное испарение металла. Пары ионизируются, что приводит к рассеиванию и экранированию луча лазера. В связи с этим при использовании лазеров большой мощности в зону сварки необходимо подавать, кроме защитного, так называемый плазмоподавляющий газ. В качестве плазмоподавляющего газа обычно используют гелий, который значительно легче аргона и не рассеивает луч лазера. Для упрощения процесса целесообразно применение смесей 50% Аг + 50% Не, которые выполняют плазмоподавляющую и защитную функции. В этом случае сварочная горелка должна обеспечивать подачу газа таким образом, чтобы он сдувал ионизированный пар.
Некоторые конструкции сопел сварочных горелок для лазерной сварки приведены на рисунке 1.9
Рис.1.9 Сопла сварочных горелок для лазерной сварки
При лазерной сварке луч постепенно углубляется в деталь, оттесняя жидкий металл сварочной ванны на заднюю стенку кратера. Это позволяет получить кинжальное проплавление при большой глубине и малой ширине шва.
Высокая концентрация энергии в лазерном луче позволяет достигать высоких скоростей сварки, обеспечивая одновременно благоприятный термический цикл и высокую технологическую прочность металла шва.
.2.3.3 Достоинства и недостатки лазерного метода сварки
К достоинствам этого метода сварки можно отнести: отсутствие механического воздействия на обрабатываемый материал; высокая локализация воздействия лазерного излучения на материал и другие достоинства.
Недостатками, в свою очередь, являются: дендритное строение сварного шва из-за высоких скоростей нагрева и охлаждения, где по границам дендритов скапливаются примеси; значительное повышение микротвердости; плотность дислокаций значительно возрастает по сравнению с исходной из-за высоких скоростей нагрева и охлаждения; в зонах воздействия лазерного излучения, а иногда и за слоем пористого расплава, наблюдается так называемый шлаковый слой, состоящий в основном из окислов железа и других продуктов химико-термического взаимодействия излучения со сплавом в атмосфере воздуха и растворенных в металле газов. Как правило, шлаковый слой содержит много пор, трещин, что противопоказано для обеспечения вакуумплотности; в зоне воздействия излучения идет травление поверхности металла газовыми и ионными струями, вылетающими из зоны обработки.
.2.4 Электронно-лучевая сварка
Электронно-лучевая сварка (ЭЛС) - это надежный, эффективный, экономичный способ соединения материалов (в том числе разнородных), превосходящий по качеству все другие известные методы сварки, как сварка в среде защитных газов, микроплазменная сварка, лазерная сварка и т.п.
Сущность процесса состоит в использовании кинетической энергии потока электронов, движущихся с высокими скоростями в вакууме. Для уменьшения потери кинетической энергии электронов за счет соударения с молекулами газов воздуха, а также для химической и тепловой защиты катода в электронной пушке создают вакуум порядка 10-4... 10-6 мм рт. ст., т.е. во всем диапазоне термического воздействия, ведение процесса в вакууме, что обеспечивает чистоту обрабатываемого материала, а также возможность полной автоматизации процесса.
Экспериментальные и расчетные данные показывают, что процесс внедрения электронного луча в материал с образованием в нем канала происходит за счет периодического с частотой 103...106 Гц (в зависимости от концентрации энергии) выброса вещества вследствие взрывообразного испарения материала. В основу таких представлений положили сравнение скоростей ввода энергии и релаксации этой энергии материалом. Для большинства металлов скорость ввода тепла в диапазоне концентрации энергии 105...106 Вт/см2 намного превышает скорость отвода его вследствие теплопроводности, что неизбежно приводит к поверхностному испарению и вскипанию микрообъема расплава вещества, в котором выделяется энергия электронного луча.
Установлено, что в жидком металле вокруг электронного луча существует полость. Эта полость все время находится в движении: глубина ее периодически колеблется от нулевой до максимальной с частотами 10...60 Гц. Кроме того, полость периодически смыкается, в основном в верхней части, а иногда и в других сечениях канала.
Трудности изучения физических явлений в зоне воздействия электронного луча обходят путем введения некоторого источника теплоты и использования теории теплопроводности. Такие подходы в ряде случаев дают возможность быстрее получить методики расчетов процесса, чем подробный анализ физических явлений. В существенной степени это связано с действием принципа местного влияния.
Для осуществления теплового подхода, т.е. решения задачи теплопроводности в условиях электронно-лучевого воздействия необходимо знать характер теплового источника и тепловой баланс процесса.
Экспериментальные данные показывают, что потери теплоты на испарение при ЭЛС с глубоким проплавлением не превышают 5... 10%, т.е. тепловой баланс электроннолучев?/p>