Экологическое содержание темы "Основания" в курсе неорганической и органической химии средней школы

Курсовой проект - Педагогика

Другие курсовые по предмету Педагогика

¶ен быть самым сильным основанием, но эксперимент показывает обратное. Видимо, три метальных радикала экранируют неподеленную пару электронов азота, мешают свободному присоединению ионов водорода, а, следовательно, в раствор мало поступает ионов гидроксила, поэтому среда слабоосновная.

Для того чтобы учащиеся лучше усвоили генетическую связь между классами органических веществ, разбирают образование ароматических аминов от родоначальника всех ароматических углеводородов бензола через нитросоединения. Прежде всего, коротко напоминают способы получения аминов жирного ряда от предельных углеводородов, затем предлагают вспомнить свойства изученного ранее бензола и объяснить их, исходя из электронного строения бензола. Для этого желательно вывесить таблицу электронного строения бензола, подготовить модель его молекулы. Таким образом, учащиеся сами протянут ниточку от бензола к фениламину через нитробензол и без труда запишут соответствующие уравнения реакций.

Здесь же демонстрируют опыт получения нитробензола в колбе с обратным холодильником. На доске записывают уравнение соответствующей реакции. Затем проводят опыт восстановления полученного нитробензола в анилин. Во время выполнения этого опыта сообщают учащимся о реакции Н.Н.Зинина и ее значении для народного хозяйства.

Затем демонстрируют чистый анилин (если он есть в школе), рассказывая о его токсичности и об осторожном обращении с ним. Демонстрируют некоторые физические свойства: агрегатное состояние, цвет, запах, растворимость в воде.

Затем переходят к изучению химических свойств анилина. По аналогии с аминами жирного ряда предполагают наличие у анилина основных свойств. Для этого в стакан, в котором проверяли растворимость анилина в воде, приливают несколько капель фенолфталеина. Окраска раствора не меняется. Проверяют взаимодействие анилина с концентрированными соляной и серной кислотами. После охлаждения смеси учащиеся наблюдают кристаллизацию солей, следовательно, анилин проявляет свойства оснований, не слабее, чем амины жирного ряда. В ходе обсуждения этих опытов составляют уравнения реакций, дают названия образующимся веществам.

Далее демонстрируют взаимодействие солей анилина со щелочью (проводим аналогию с солями аммония). Здесь попутно ставят вопрос: в виде каких соединений амины жирного ряда находятся в селедочном рассоле, если он взаимодействует со щелочью с образованием аминов? (Как правило, учащиеся отвечают: в виде солей). Проверяют растворимость их в воде и взаимодействие солей анилина с окислителями, например с двухромовокислым калием. Этой реакцией обнаруживают вещества, разнообразные по окраске. Сообщают учащимся, что на свойствах анилина основано производство мно-гочисленных анилиновых красителей (в том числе и такого ценного, как синтетическое индиго), лекарственных веществ, пластических масс. В заключение демонстрируют опыт взаимодействия анилина с хлорной известью. Отмечают, что эта реакция является характерной на анилин. Для проверки предлагают обнаружить анилин в смеси веществ, полученных при постановке опыта восстановления нитробензола металлами. Учащиеся еще раз убеждаются в существовании генетической связи между классами. Для закрепления изученного предлагают составить уравнения реакций, подтверждающие возможность осуществления следующих превращений:

 

 

Учащиеся на опыте увидят, что основные свойства анилина по сравнению с аминами предельного ряда ослаблены. Объясняется это влиянием ароматического радикала фенила С6Н5. Для пояснения вновь расссматривваем электронное строение бензола. Учащиеся вспоминают, что подвижное -электронное облако бензольного ядра образовано шестью электронами (хорошо иметь модель молекулы или хороший рисунок молекулы бензола). Необходимо подчеркнуть, что в бензольном ядре вместо одного атома водорода стоит аминогруппа, нарисовать электронное строение молекулы амина и еще раз обратить внимание на свободную неподеленную пару электронов атома азота в аминогруппе, которая вступает во взаимодействие с -электронами бензольного кольца. Вследствие этого на азоте электронная плотность уменьшается, свободная пара электронов с меньшей силой удерживает протон водорода и в раствор поступает мало гидроксильных ионов. Все это определяет более слабые основные свойства анилина, что наблюдалось при реакции его с индикаторами.

Неподеленная пара электронов азота аминогруппы, вступая во взаимодействие с -электронами бензольного ядра, смещает электронную плотность в орто- и пара-положения, делая ядро бензола в этих местах химически более активным. Это легко подтверждается опытом взаимодействия анилина с бромной водой, который тут же показывают:

 

 

В заключение следует обратить внимание учащихся на существующую в природе связь между веществами, на их развитие от простого к сложному.

2.2.3.1 Демонстрационные опыты и практические работы по теме

Получение аминов из селедочного рассола. В селедочном рассоле содержится значительное количество аминов, преимущественно диметиламина (СН3)2NН и триметиламина (СН3)3N.

1. В большую круглодонную колбу с отводной трубкой наливают 1520 мл селедочного рассола, добавляют 67 мл концентрированного раствора едкого натра и, нагревая колбу на голом пламени, отгоняют амины в пробирку с водой, охлаждаемую снегом или льдом. Через несколько минут образуется раствор, с которым можно проделать сл?/p>