Экологические аспекты преподавания темы "Ванадий и его применение" в школьном курсе химии

Курсовой проект - Педагогика

Другие курсовые по предмету Педагогика

ВВЕДЕНИЕ

 

История ванадия началась в 1801 г. Его открыл мексиканский минералог А. М. дель Рио в свинцовой руде и назвал эритронием (от греч. "erythros" красный) из-за цвета соли этого элемента. Однако четыре года спустя это открытие было опровергнуто ошибочным заключением о том, что новое вещество представляет собой содержащий примеси хромат свинца.

Повторно открыл элемент в 1830 г. шведский химик Н. Сефстрём, анализируя пробы железной руды. Сефстрём назвал новый элемент ванадием по имени легендарной древнескандинавской богини красоты Ванадис.

 

ГЛАВА 1. ВАНАДИЙ: ПРИРОДНЫЕ И ТЕХНОГЕННЫЕ РЕСУРСЫ, СВОЙСТВА, ПРОИЗВОДСТВО И ПОТРЕБЛЕНИЕ

 

Немецкий химик Ф. Вёлер, изучая образцы мексиканской свинцовой руды, доказал, что эритроний и ванадий один и тот же химический элемент. В итоге элемент сохранил название "ванадий", а его первооткрывателями считают двух ученых: А. М. дель Рио и Н. Сефстрёма.

Металлический порошок ванадия впервые получил в 1865 г. английский химик Г. Роско восстановлением хлорида ванадия(И) VC12 водородом. Пластичный, ковкий ванадий был получен лишь в 1927 г. Морденом и Ричем при восстановлении оксида ванадия(У) V205 кальцием.

 

ПРИРОДНЫЕ РЕСУРСЫ

 

Ванадий весьма распространенный элемент: его содержание в земной коре составляет 1,9"2 % (здесь и далее используются проценты по массе), что больше содержания таких элементов, как Pb, Sn, Со, Ni, Zn, Сг и даже Си. В свободном виде в природе он не встречается. Минералы, богатые ванадием, встречаются редко. Это ванадинит (содержит 19 % V205), патронит (17-29 %), деклуазит (22 %), купродеклуазит (17-22 %), карнотит (20 %), роскоэлит (21-29 %).

Ванадий типичный рассеянный элемент, и в литосфере большая его часть встречается в комплексных полиметаллических рудах: титаномагнетитовых, ильменит-магнетитовых, уран-ванадиевых, свинцово-цинковых, медных и др. В некоторых магнетитовых, титаномагнетитовых, осадочных железных рудах и ванадийсодержащих фосфоритах бывает до 2,5-3,0 % V205. Основные запасы комплексных полиметаллических руд сосредоточены в ЮАР, Китае, России, США.

В России ванадий впервые был найден в Ферганской долине, позднее его обнаружили в керченских железных рудах, после чего было налажено производство отечественного феррованадия. Богатейшими источниками ванадия оказались уральские титаномагнетиты.

Прогнозируется, что в ближайшем будущем источниками извлечения ванадия могут быть оолитовые бурые железняки (железо-фосфористые руды), характеризующиеся низким содержанием V205 (0,07-0,2 %), но большими запасами; углисто-кремнистые сланцы (0,02-0,04 %); золы углей и горючих сланцев (0,2 %); железомарганцевые конкреции океанов (0,1 %).

Общие мировые промышленные запасы ванадия в рудах (в пересчете на V205) составляют около 28 млн. тонн, а прогнозные оцениваются в 100 млн. тонн, что при достигнутом уровне использования способно удовлетворять мировые потребности в течение 700 лет. Наибольшие запасы (около 65 %) сосредоточены в осадочных месторождениях битуминозных сланцах, сырой нефти и нефтеносных песках, фосфатных породах. В настоящее время ванадий в основном извлекают из титаномагнетитовых, а также ильменит-магнетитовых руд, но и запасы титаномагнетитов могут обеспечить потребности промышленности в ванадии на сотни лет. Тем не менее роль техногенного сырья (продукты нефтепереработки, шлаки, золы) для его получения непрерывно возрастает.

Богатый источник металлов, в первую очередь ванадия и никеля, нефть. Содержание ванадия в нефти колеблется в пределах 10"2-10"5 %, а никеля на порядок меньше. В 1 т нефти тяжелых сортов может содержаться до 300 г ванадия и около 40 г никеля. В битумах эти показатели в 7-10 раз больше. Преобладающая часть (иногда до 98 %) ванадия, присутствующего в сырой нефти, аккумулируется в получаемых после перегонки нефтяных остатках.

В процессе нефтепереработки ванадий и никель, как и другие тяжелые металлы, переходят в тяжелые высокотемпературные фракции, прежде всего в мазут, в котором их концентрация возрастает в десятки раз. Тяжелые фракции сжигают на ТЭС, при этом их органическая часть сгорает, а неорганическая оседает на поверхностях котлоагрегатов и газовых трактов. В результате содержание ванадия в золошлаковых отходах (ЗШО) ТЭС возрастает до 20-40 %, а никеля до 5-12 %.

Таким образом, в нефти заключены значительные запасы ванадия, что позволит в ближайшем будущем расширить сырьевую базу его производства. По-видимому, наиболее заметную роль будет играть ванадийсодержащая нефть Венесуэлы, а также нефть некоторых месторождений Ирана, Кувейта и Саудовской Аравии, в 1 т которой содержится 20-180 г ванадия. По предварительным оценкам, разведанные в России запасы нефти содержат 7-10 млн. тонн ванадия.

По микроэлементному составу нефтей и их фракций накоплен обширный материал. Гораздо меньше сведений имеется о том, в каких формах эти элементы существуют в нефти и какова структура содержащих их соединений. До сих пор достоверно не выяснена точная химическая структура ни одного нефтяного вещества, содержащего микроэлемент, за исключением порфириновых комплексов ванадила (V02+) и никеля.

Порфирины представляют собой широко распространенные в живой природе пигменты, в основе молекул которых лежит порфинструктура из четырех колец пиррола (например, биологически важные комплексы порфирина с железом гемоглобин, с магнием хлорофилл). Порфирины обнаружены в нефти, битумах и ископаемых органических остатках.

При переработке битуминозных сланцев, нефтенос?/p>