Числові методи

Контрольная работа - Компьютеры, программирование

Другие контрольные работы по предмету Компьютеры, программирование

?ємо місцями рівняння Pk i Pl

if ( l!=k)

for( j=0; j<n; j++)

{t=A[l][j]; A[l][j]=A[k][j]; A[k][j]=t;

t=Ainv[l][j]; Ainv[l][j]=Ainv[k][j]; Ainv[k][j]=t;}

// ділимо k-й рядок на головний елемент

for (j=0; j<n; j++) { A[k][j]/=aMax; Ainv[k][j]/=aMax; }

// обчислюємо елементи решти рядків

for (i=0; i<n; i++)

if( i!=k )

{t=A[i][k];

for (j=0; j<n; j++)

{A[i][j]-=t*A[k][j];

Ainv[i][j]-=t*Ainv[k][j];}}}

return 0;

} // fGausJordana()

void fDobMatr(int n, float A[nMax][nMax], float B[nMax],float X[nMax])

// функція знаходить добуток матриці А на вектор В і результат повертає в

// векторі Х

{int i,j;

float summa;

for (i=0; i<n; i++)

{summa=0;

for (j=0; j<n; j++)

{summa+=A[i][j]*B[j];

X[i]=summa;}}

} // fDobMatr

void main()

{float A[nMax][nMax],Ainv[nMax][nMax];

float B[nMax];

float X[nMax];

int n,i,j;

char *strError="\n Error of file !";

FILE *FileIn,*FileOut;

FileIn=fopen("data_in.txt","r"); // відкриваємо файл для читання

if (FileIn==NULL)

{cout << " \"Data_in.txt\": Error open file or file not found !!!\n";

goto exit;}

FileOut=fopen("data_out.txt","w"); // відкриваємо файл для запису

if (FileOut==NULL)

{cout << " \"Data_out.txt\": Error open file !!!\n";

goto exit;}

if(fscanf(FileIn,"%d",&n)==NULL)

{ cout << strError; goto exit;};

for (i=0; i<n; i++)

for(j=0; j<n; j++)

fscanf(FileIn,"%f",&(A[i][j]));

for (i=0; i<n;i++)

if(fscanf(FileIn,"%f",&(B[i]))==NULL)

{ cout << strError; goto exit;}

if(fGausJordan(n,A,Ainv)!=0)

{ cout << "\n det|A|=0 !"; goto exit;}

fDobMatr(n,Ainv,B,X);

// Вивід результатів

for (i=0; i<n; i++)

{printf(" x[%d]= %f ",i+1,X[i]);

fprintf(FileOut," x[%d]= %f ",i+1,X[i]);}

fclose(FileIn);

fclose(FileOut);

exit: cout << "\n Press any key ...";

getch();}

Результат роботи програми:

 

x[1]= 3.017808 x[2]= 0.356946 x[3]= -0.302131

Завдання 2

 

Задана задача Коші

 

,

 

а) Знайти розвязок в табличній формі методом Рунге-Кутта:

 

, , .

 

б) Інтерполювати цю функцію кубічним сплайном. Систему рівнянь для моментів кубічного сплайну розвязати методом прогонки. Вибрати крайові умови для кубічного сплайну у вигляді

 

.

 

в) Використовуючи кубічний сплайн з пункту б) обчислити методом Сімпсона .

Взяти ( кількість відрізків розбиття).

Рішення.

а) Метод Рунге-Кутта

Розрахунок будемо проводити за наступними формулами :

 

;

;

;

;

;

.

 

Цей алгоритм реалізовується в програмі Work2_1.

//------------------------------------------------------------

// Work2_1.cpp

//------------------------------------------------------------

// "Числові методи"

// Завдання 2

// Рішення задачі Коші методом Рунге-Кутта

#include

#include

#include

typedef float (*pfunc)(float,float); // pfunc - вказівник на функцію

const int nMax=5; // максимальна кількість відрізків розбиття

void fRunge_Kutta(pfunc f, float x0, float y0,float h, int n, float Y[nMax])

/* Функція знаходить табличне значення функції методом Рунге-Кутта

Вхідні дані:

f - функція f(x,y)

x0,y0 - початкова точка;

h - крок;

n- кількість точок розбиття;

Вихідні дані:

Y- вектор значень функції*/

{float k1,k2,k3,k4,x; // максимальний елемент , тимчасова змінна

int i;

x=x0; Y[0]=y0;

for (i=0; i<n-1; i++)

{k1=f(x,Y[i]);

k2=f(x+h/2, Y[i]+k1*h/2);

k3=f(x+h/2, Y[i]+k2*h/2);

k4=f(x+h, Y[i]+h*k3);

Y[i+1]=Y[i]+(h/6)*(k1+2*k2+2*k3+k4);

x+=h;}}

float Myfunc(float x,float y)

{return log10(cos(x+y)*cos(x+y)+2)/log10(5);}

void main()

{float Y[nMax],h,x0,y0;

int n,i;

char *strError="\n Error of file !";

FILE *FileIn,*FileOut, *FileOut2;

FileIn=fopen("data2_in.txt","r"); // відкриваємо файл для читання

if (FileIn==NULL)

{cout << " \"Data2_in.txt\": Error open file or file not found !!!\n";

goto exit;}

FileOut=fopen("data2_out.txt","w"); // відкриваємо файл для запису

if (FileOut==NULL)

{cout << " \"Data2_out.txt\": Error open file !!!\n";

goto exit;}

FileOut2=fopen("data2_2in.txt","w"); // відкриваємо файл для запису

if (FileOut==NULL)

{cout << " \"Data2_2in.txt\": Error open file !!!\n";

goto exit;}

if(fscanf(FileIn,"%d%f%f%f,",&n,&h,&x0,&y0)==NULL)

{ cout << strError; goto exit;};

fRunge_Kutta(Myfunc,x0,y0,h,n,Y);

// Вивід результатів

for (i=0; i<n; i++)

{printf(" x[%d]= %4.2f ",i,Y[i]);

fprintf(FileOut," x[%d]= %4.2f ",i,Y[i]);

fprintf(FileOut2,"%4.2f ",Y[i]);}

fclose(FileIn);

fclose(FileOut);

exit: cout << "\n Press any key ...";

getch();}

Результат роботи програми (файл "data2_out.txt"):

 

x[0]= 1.00 x[1]= 1.05 x[2]= 1.10 x[3]= 1.14 x[4]= 1.18

 

б) В загальному вигляді кубічний сплайн виглядає наступним чином:

 

,

 

Параметри кубічного сплайну будемо обчислювати , використовуючи формули:

 

; ;

; , де

моменти кубічного сплайну.

 

Моменти мають задовольняти такій системі рівнянь:

 

.

Для ; ; .

 

Якщо прийняти до уваги граничні умови , то систему можна записати так

 

.

 

В даному випадку матриця з коефіцієнтів при невідомих є тридіагональною

 

,

 

тому для знаходження моментів кубічних сплайнів застосуємо метод прогонки.

На прямому ході обчислюємо такі коефіцієнти.

 

; ;

 

На зворотньому ході обчислюємо значення моментів кубічного сплайну.

 

; .

 

Для знаходження коефіцієнті вкубічного сплайну призначена програма Work2_2.

//------------------------------------------------------------

// Work2_2.cpp

//------------------------------------------------------------

// "Числові методи"

// Завдання 2

// Інтерполювання функції кубічним сплайном

#include

#include

#include

const int nMax=4; // максимальна кількість відрізків розбиття

const float x0=0.;// початкова точка сітки

const float h=0.1;// крок розбиття

// вектори матриці А

float a[]={0., 0.5, 0.5};

float b[]={2., 2., 2.};

float c[]={0.5, 0.5, 0.};

//void fMetodProgonku( int n,float a[nMax],float b[nMax],float c[nMax],float d[nMax], float M[nMax+1])

/* Функція знаходить моменти кубічного сплайну методом прогонки

Вхідні дані:

a,b,c -вектори м?/p>