Четвертая координата – козни лукавого

Статья - Философия

Другие статьи по предмету Философия

формуле (886), а предпочли изобрести специальную частицу нейтрино (...), которой приписали способность уносить недостающую в балансе энергию (В. Паули, 1930). Нейтрино это одна из наиболее грандиозных научных мистификаций века [1, с.388-389; 2, с.241].

Ну хорошо, природа поделилась с нами сведениями о трех стабильных элементарных частицах дареному коню с зубы не смотрят. А откуда взялись ещё три сотни разношерстных частиц?

С момента осуществления первого искусственного превращения одного ядра в другое, т.е. с момента расщепления Э. Резерфордом (1919) ядра атома азота с помощью альфа-частиц, стало ясно, что для изучения структуры атомных ядер необходимы пучки ускоренных частиц. Природные источники ускоренных частиц радиоактивные вещества дают слишком малую интенсивность, ограниченную энергию и совершенно не управляемы, поэтому началась разработка специальных ускорителей. Но ускорять можно лишь электрически заряженные частицы - протоны или электроны. Следовательно, только ими можно расстреливать (бомбардировать) мишени, т.е. кристаллические решетки каких-либо химических элементов, а потом... изучать разлетающиеся осколки, которые, как известно, могут быть разные большие, маленькие и средние. Именно таким образом получено столь большое число неизвестных ранее, короткоживущих элементарных частиц. Будут и ещё, потому что эффективно используется метод большого молотка: не достаточно дробилки весом 10 т, делают установку весом 100 т, слабовата и она строят установку в 1000 т и т.д.

Так сколько же стабильных первоэлементов может быть на каждом из официально признанных уровней мироздания? На макроуровне их около 300, на микроуровне всего три штуки. Тенденция, однако! Она на руку только эфирщикам, например В.А. Ацюковскому [4], который всё многообразие вышерасположенных миров с удовольствием построил из вихрей эфирных частичек амеров, одного-единственного первоэлемента, принадлежащего субмикроуровню. Структура амера для него самого - загадка за семью печатями. Однако она не особенно его смущает. Ацюковский конструирует амер из вихрей более мелких амеров-1, каждый из которых в свою очередь состоят из вихрей ещё более мелких амеров-2 и так далее... до бесконечности. Философия гибка до безобразия, выручит кого угодно.

Структура первоэлементов.

Как устроен атом? Любой скажет модель планетарная (эксперимент - Э. Резерфорд, 1911; три постулата - Н. Бор, 1913). В середине ядро, состоящее из протонов и нейтронов, а вокруг вьются электроны, правда как-то странновато, насквозь вероятностно, и сигают с орбиты на орбиту мгновенно, презрев здравый смысл, вроде тут, потом вдруг не тут, в стиле трюков знаменитых фокусников Кио. А что делает электрон внутри ядра, порхая от протона к протону и беспардонно нейтрализуя временно (на 14,762 минуты) приютившего его хозяина?

Как устроен протон? Исследования рассеяния электронов и фотонов (гамма-квантов) на протонах позволило обнаружить пространственное распределение электрического заряда и магнитного момента протона (Р. Хофстедтер и др., 1957), а также электрической и магнитной поляризуемостей (В.И. Гольданский и др., 1960), таким образом доказав, что у него есть всё-таки внутренняя структура, правда какая, неизвестно.

Как устроен электрон, никто не знает, хотя теоретически считается, что он окружен умопомрачительной чертовщиной шубой из виртуальных* фотонов, сшитой из нездоровых фантазий математиков. [Примечание *. Виртуальные частицы это такие ненормальные частицы, которые вертятся между бытием и небытием, которые не успев родиться вопреки законам сохранения, тут же исчезают, не успев их нарушить].

Структуру фотона лучше всего охарактеризовать известной фразой Гусары, молчать!

Об элементарных частицах субмикромира почти ничего неизвестно. Предполагается существование гравитона, мало чем отличающегося по свойствам от фотона (представителя микромира). Первым поисками гравитона начал заниматься американский физик Дж. Вебер (1959). Потратил на это всю свою жизнь, но не обнаружил, и не только он. Да и не мудрено, если до сих пор не знают, к какому миру относится гравитон к микро- или субмикромиру.

Много копий поломано вокруг магнитного монополя (П.А.М. Дирак, 1931) с тем же грустным результатом. Между прочим, Вейник предложил свою гипотезу о существовании частицы магнитного поля - сатлона и провел подтверждающие её опыты [3, с.274-279], да кто ж его будет слушать, если он относится к Эйнштейну без должного пиетета.

Можно было бы поискать взаправдашний электрон - не частицу, которая током бьет любопытных, сующих два пальца в розетку, а носителя электрического заряда (принято именовать электростатическим полем) на уровне субмикромира. Хотя какому нормальному Гинзбургу или Круглякову это нужно, если субмикромир подведомственен лженауке?

Проблема массы.

Упорство, с которой ученые постигают глубины микромира, вполне естественно заставляет их не только крошить материю в пыль, но и определять свойства полученных частичек. С чем бы удивительным они ни сталкивались, всегда автоматически подразумевалось, что первоэлементы непременно обладают массой, как и абсолютно любое другое природное тело. Иначе было бы просто невозможно в расчетах манипулировать простейшей механической ФДМ, обросшей к XIX веку убедительным математическим аппаратом, к тому же прекрасно подтвержденным экспериментально.

Однако не всё так просто. В начале ХХ века, как бы вдруг [5], бурно разросшийся сорняк теория относительности лишил фот?/p>