Цифровая схемотехника
Методическое пособие - Разное
Другие методички по предмету Разное
>, когда только один и только один из входных сигналов принимает значение лог.1, то такие элементы называют элементами исключающее ИЛИ. Это тоже элементы логического порога, только порог равен единице. Для них ГОСТами также регламентировано УГО, в основное поле которого помещается метка =1 (для элементов исключающее ИЛИ), либо метка вида =n, где n целое число меньше числа входов у логического элемента.
Так, на рис.1.14 приведены УГО элемента исключающее ИЛИ с тремя входами, УГО элемента логического порога =2 из 4-х, карты Карно их выходных функций и функциональные эквивалентные схемы.
Анализируя приведённые карты Карно функций X и Y, замечаем, что минимальных дизъюнктивных алгебраических форм у этих функций нет (о визуально-матричном способе минимизации логических функций будет сказано ниже). Поэтому функциональные схемы названных элементов можно построить, найдя алгебраические выражения в ДСНФ либо в других формах.
Так, схема рис.1.14,д получена по следующему выражению:
X = .(1.17)
Это ДСНФ функции исключающее ИЛИ. Если бы аналогично находить выражение функции Y, то оно состояло бы из 6 дизъюнктивных членов (слагаемых), каждый из которых представлял бы произведение всех 4-х аргументов. Тогда функциональная схема элемента логического порога =2 из 4-х состояла бы из элемента 6ИЛИ, шести логических элементов 4И и из 4-х элементов НЕ. Схема же на рис.1.14,е получена по следующему логическому выражению:
Y = (ad)(bc) + (ab)(cd).(1.18)
О правилах получения подобного рода алгебраических выражений по булевым матрицам логических функций речь будет идти ниже. Сейчас же уместно напомнить, что сумма по mod2 отображается на картах Карно шахматным узором расположения единиц и нулей. Так, выражение (1.18) получено по выделенным различной заливкой частным шахматным узорам (рис.1.14,г) для функции Y с применением операции выноса за скобки общих сомножителей. Аналогичное выражение можно было бы получить и для функции исключающее ИЛИ по карте рис.1.14,б.
Следует отметить, что в частном случае, когда число входов у элемента исключающее ИЛИ равно двум, то эта функция тожественно равна функции сложения по mod2 от двух аргументов (2). К сожалению, в интегральном исполнении логические элементы исключающее ИЛИ и логического порога при числе входов более двух не выпускаются.
1.3.13. Логические элементы ИМПЛИКАТОРЫ
Эти логические элементы описываются функцией импликация (табл.1.3 функции V11 и V14).
V11 = b a = ,
V14 = a b = .(1.19)
Первая из функций называется импликация b, а вторая импликация а. На рис.1.15 приведены условные графические обозначения логического элемента ИМПЛИКАТОР а и карта Карно его выходной функции. Правые части выражений (1.19) свидетельствуют о том, что функция импликации в то же самое время является инверсией функции ЗАПРЕТ.
Из карты рис.1.15,в следует, что функция импликации ложна только в том случае, когда один из аргументов принимает ложное значение, а другой истинное.
В интегральном исполнении ИМПЛИКАТОРЫ в сериях ИМС широкого применения практически не выпускаются. Вместе с тем, согласно УГО рис.1.15,а и в, функцию импликации можно реализовать элементом 2ИЛИ, подав сигнал на его один из входов через инвертор, либо на элементе ЗАПРЕТ, включив на его выход инвертор. Эти функциональные эквивалентные схемы мы не приводим, из-за их тривиальности.
Следует отметить, что входы у логических элементов импликаторов логически неравнозначны, поэтому порядок подачи входных сигналов строго фиксирован.
1.3.14. Многофункциональные логические элементы
Выше были рассмотрены простые логические элементы, которые реализуют простые либо достаточно простые логические операции. Вместе с тем, в интегральном исполнении выпускаются более сложные логические элементы (ЛЭ), которые способны реализовать (одновременно, либо путём перекоммутации входов к шинам лог.0 или лог.1) несколько простых функций. По сути, эти элементы допускают возможность реализации многоместных логических функций по фрагментам их нормальных дизъюнктивных, либо нормальных конъюнктивных алгебраических форм. В табл.1.2 уже были приведены названия интегральных схем по функциональному назначению и их условные обозначения. Рассмотрим только наиболее широко применяемые многофункциональные ЛЭ.
Логические элементы И-ИЛИ-НЕ
Такие элементы реализуют инверсию дизъюнктивных нормальных форм (ДНФ) алгебраических выражений функций, что эквивалентно реализации конъюнктивных нормальных форм (КНФ) этих функций. Так, на рис.1.16 приведены УГО микросхем К155ЛР1 и К155ЛР3. В микросхеме К155ЛР1 содержится два элемента 2-2И-2ИЛИ-НЕ, а микросхема К155ЛР3 представляет собой один элемент 2-2-2-3И-4ИЛИ-НЕ, расширяемый по ИЛИ.
По функциональной схеме (рис.1.16,б) одного из элементов микросхемы К155ЛР1 можно составить следующее алгебраическое выражение его выходной функции:
F = = .(1.20)
Таким образом, эта функция от 4-х аргументов, причём правая часть выражения (1.20) соответствует минимальной конъюнктивной нормальной форме функции F (МКНФ). Левая часть этого выражения непосредственно соответствует УГО элемента 2-2И-2ИЛИ-НЕ. Второй такой же элемент этой микросхемы имеет нелогические вход