Характеристики микромеханических реле на основе тонких слоистых исполнительных элементов

Дипломная работа - Физика

Другие дипломы по предмету Физика

нтактный упор - гальваническое золото, Ra = 56 нм.

 

Данные по шероховатости получены на атомно-силовом микроскопе Интегра, область сканирования 1010 мкм.

Нижний контактный упор микрореле формируется методом гальванического осаждения и представляет собой столбик высотой до 3 мкм, верхний электрод - подвижный элемент - формируется аналогичным образом, но морфология низа зависит не от технологии гальванического осаждения, а от режимов нанесения жертвенного слоя и вспомогательных слоев вакуумно-напыленных металлов, которые на финальных технологических операциях удаляются методами травления.

Микрошероховатость низа подвижного элемента варьируется от 5 до 20 нм, а микрошероховатость контактного упора сильно зависит от режимов и условий гальванического осаждения. Высота контактного упора составляет от 1 до 3 мкм. Микрошероховатости никеля, меди и золота в указанном диапазоне толщин можно посмотреть в 2.5.2 или на рисунке 2.21. При выборе геометрии контактов с целью устранения залипания рекомендуем провести экспериментальную работу по исследованию сопротивления контакта, длительности переходных процессов переключения и быстродействия микрореле.

. Для борьбы с залипанием электродов можно также попробовать усилить жесткость конструкции подвижного элемента. С целью улучшения механических и электрофизических характеристик микрореле было предложено изготавливать не однослойные, а многослойные исполнительные элементы на основе сандвич-структутры золото-никель-золото. Гальванические пленки золота могут использоваться в качестве проводящих функциональных слоев, а никелевая прослойка - для придания требуемой жесткости.

Таким образом, борьба с залипанием электродов методом усиления жесткости для данной задачи сводится к определению минимальной жесткости конструкции, при которой сила упругости подвеса будет больше по модулю силы межмолекулярного взаимодействия контактирующих поверхностей исполнительного элемента и нижнего электрода.

Для этого требуется провести расчетно-экспериментальную оценку сил молекулярного взаимодействия материалов контактов. Предлагаем провести экспериментальное исследование методом силовой спектроскопии на атомно-силовом микроскопе, а для оценки полученных экспериментальных значений сил адгезии, расчитать значения микровзаимодействий молекул материала контактов к материалу зонда по модели Леннард-Джонса [16]. Затем пересчитать точечные значения адгезии в масштабах площади контактов и полученное значение интегральной силы молекулярного притяжения сравнить с упругостью конструкции исполнительного элемента, и таким образом выразить искомую минимальную жесткость. Пример расчетно-экспериментальной оценки адгезии проводили в бакалаврской работе ( см. в приложении).

3. Управляющее напряжение срабатывания. Необходимо учитывать, что усиление жесткости приведет к увеличению управляющего напряжения срабатывания. Напряжение можно увеличивать до определенного критического значения, которое расчитывается по формуле [1]:

 

(3.1),

 

где: k - жесткость упругого подвеса, d - величина зазора между электродами, S - площадь инерционной массы.

Управляющее напряжение расчитали для слоистых исполнительных элементов с разной толщиной никелевой прослойки, используя полученные экспериментальные значения жесткости (см. глава 2, результаты 2.5.3). Расчетное напряжения срабатывания исполнительного элемента с двумя меандрами составляет 4 - 35 В, с тремя меандрами - от 27 до 65 В, с четырьмя меандрами - от 40 до 87 В. Расчетные значения напряжения сходятся с экспериментальными в пределах инженерной погрешности. Экспериментально проверяли напряжение срабатывания только трех образцов (см. табл.2.21, образцы 1, 2, 3), оно составляет 40-60 В.

Для снижения управляющего напряжения рекомендуем изменять геометрические параметры конструкции. Например, если уменьшить зазор между электродами в два раза - расчетное управляющее напряжение снизится на 60%. Для увеличения быстродействия предлагаем увеличивать инерционную массу подвижного элемента.

4. Расчетное давление срабатывания. Исполнительные элементы, исследуемые в работе (см. рис 1.7. и рис. 3.1) могут найти применения не только в микрореле, но и других устройствах МСТ, таких как акселерометры или датчики давления. В связи с этим в работе проведен расчет точечных нагрузок, требуемых для того, чтобы исполнительный элемент замкнул нижний электрод.

 

Рис. 3.6. СЗМ-изображение индента на поверхности исполнительного элемента (слева) и профиль индента (справа).

 

Полученные результаты приведены в приложении: исполнительные элементы на двух меандрах замкнут нижний электрод при индентировании с силой 10-30 мН, на трех меандрах - при 15-60 мН, на четырех меандрах - при 40-170 мН. В пересчете на давления, получили для образцов с двумя меандрами нагрузки от 80 до 240 кПа, для образцов с тремя меандрами - от 115 до 490 кПа и для образцов с четырьмя меандрами - от 320 до 1330 кПа.

Таким образом, при увеличении толщины никелевой прослойки в слоистом исполнительном элементе от 0.5 до 3.5 мкм напряжение срабатывания возрастает более чем в 2 раза, а механическое давление срабатывания - более чем в 4 раза.

 

3.2 Характеристики исполнительных элементов микрореле, изготовленных с учетом предложенных технологических и конструктивных решений

 

В результате проведенной работы оптимизирована технология изготовлени?/p>