Характеристики микромеханических реле на основе тонких слоистых исполнительных элементов

Дипломная работа - Физика

Другие дипломы по предмету Физика

?лючается в отсутствии потребления тока, а недостаток - в высоком напряжении срабатывания (от 5 до 100 В). Электростатические реле применяются в системах, для которых важным является низкая потребляемая мощность [1].

Исполнительный элемент электростатического микрореле, в самом простом случае, представляет собой систему из двух коммутирующих электродов (подвижного и неподвижного), электрически изолированных друг от друга в разомкнутом состоянии [5].

В консольном микрореле такой элемент выполнен в виде свободно подвешенной консольной балки (см. рис.1) [2].

 

Рис.1.1. Консольное микромеханическое реле.

а) Ключ разомкнут; б) Ключ замкнут.

 

При подаче управляющего напряжения между металлическими поверхностями происходит перераспределение зарядов, что приводит к возникновению электростатических сил. Под действием этих сил, заставляющих свободно подвешенный контакт двигаться навстречу нижнему электроду, балочка прогибается. В ней возникают силы упругости, направленные в противоположных воздействию направлениях. В момент, когда электростатические силы превзойдут силы упругости - консоль резко упадет на нижний электрод, что приведет к замыканию электрических контактов (рис.1.1-б).

Консоль вернется в исходное положение (рис 1.1-а) после того, как приложенное напряжение станет ниже порогового значения размыкания контактов (которое, как правило, бывает значительно ниже напряжения срабатывания) [2].

Рассмотрим подробнее процессы, возникающие в балочке консольного микромеханического реле под действием внешней силы (рис. 1.2-а). Любой объем, расположенный в напряженном теле, подвержен воздействию двух типов сил: объемных и поверхностных [3].

Объемные силы действуют на все части упругого элемента извне, к ним относятся, например, сила тяжести и сила инерции. Поверхностные силы приобретают огромное значение для наноразмерных объектов, в частности, наноструктурированных пленок. Дальнейшая миниатюризация микроустройств и развитие планарных технологий в полупроводниковой промышленности уже происходит с учетом эффектов в приповерхностном слое, таких как, например, реконструкция атомов и возникновение другого порядка из-за ненасыщенности связей на поверхности [4].

Поверхностные силы в рассматриваемых микро- и нанотолщинных балочных подвижных элементах действуют через поверхность любого удельного объема со стороны окружающих частей. Через них выражаются механические напряжения. В свою очередь, связь между механическими напряжениями и деформациями определяет закон Гука. Если принять упругие свойства материала консоли анизотропными, то закон Гука в тензорной форме примет вид:

 

?ij = sijklTkl (1.1)

 

где: sijkl - тензор упругих податливостей; Tkl - тензор мех. напряжений [3].

Выделим часть консольной балочки сечением S, левую часть упругого элемента отбросим. Уравновесим отсутствующую левую часть силами, распространяющимися по сечению, как показано на рис. 1.2-б.

 

Рис.1.2. а) Балочка консольного микрореле под действием силы Q.

б) Выделенная сечением S часть консольной балки.

 

Вертикальную составляющую смещения балочного исполнительного элемента можно найти на основе вычисленных компонент тензора механических напряжений и тензора упругих деформаций:

 

(1.2)

 

где: а - толщина балочки; b - ширина балочки; L - длина балочки;

Q - действующая сила; Sij - тензор упругих деформаций.

Выражение (1.2) справедливо для случая, когда кристаллографическая ориентация молекул материала балочки совпадает с осями x1, x2, x3 (см. рис. 1.2). Расчет смещения консольной балки для всех случаев кристаллографической ориентации рассмотрены подробно в [3]. Четыре года спустя, другая группа ученых [5] также выяснила, что отклонение конца балки пропорционально L3/a3b.

Рассмотренный выше балочный подвижный элемент применяется при последовательном электрическом соединении, в случае параллельного соединения используют, например, двухконсольные микромеханические реле (рис.1.3), в которых роль исполнительного элемента выполняет жестко зафиксированная мембрана [6].

 

Рис.1.3. Двухконсольное (мембранное) микромеханическое реле.

а) Ключ разомкнут; б) Ключ замкнут [2].

 

При подачи сигнала на пластину действует равномерно распределенная нагрузка. Расчет напряжений и деформаций в таком балочном подвижном элементе сводится к решению уравнений на прогибы [4]. Таким образом, мы рассмотрели самые простые конструктивные схемы исполнительных элементов УМСТ - консоли и мембраны. В зависимости от поставленных задач и функционального назначения устройства в электростатических микрореле и других УМСТ могут применяться более сложные типовые конструкции исполнительных элементов.

Исполнительный элемент является самым критическим узлом конструкции микромеханического устройства, что объясняется механической сложностью и подверженностью к износу [2,3].

Исполнительный элемент (чувствительный элемент) устройств микросистемной техники (УМСТ), таких как ВЧ переключатель, акселерометр, датчик давления, состоит из инерционной массы (ИМ), которая смонтирована в корпус с помощью упругих подвесов [2]. На рис. 1.1 представлена принципиальная схема исполнительного элемента УМСТ.

 

1 - корпус, 2 - упругий подвес, 3 - подвижный эл