Функция y=ax^2+bx+c
Методическое пособие - Математика и статистика
Другие методички по предмету Математика и статистика
Конспект урока по алгебре для 8 класса средней общеобразовательной школы
Тема урока: Функция
Цель урока:
- Образовательная: определить понятие квадратичной функции вида
(сравнить графики функций и ), показать формулу нахождения координат вершины параболы (научить применять данную формулу на практике); сформировать умение определения свойств квадратичной функции по графику (нахождение оси симметрии, координат вершины параболы, координат точек пересечения графика с осями координат).
- Развивающая: развитие математической речи, умения правильно, последовательно и рационально излагать свои мысли; развитие навыка правильной записи математического текста при помощи символов и обозначений; развитие аналитического мышления; развитие познавательной деятельности учащихся через умение анализировать, систематизировать и обобщать материал.
- Воспитательная: воспитание самостоятельности, умения выслушать других, формирование аккуратности и внимания в письменной математической речи.
Тип урока: изучение нового материала.
Методы обучения:
обобщенно-репродуктивный, индуктивно-эвристический.
Требования к знаниям и умениям учащихся
знать, что такое квадратичная функция вида , формулу нахождения координат вершины параболы; уметь находить координаты вершины параболы, координаты точек пересечения графика функции с осями координат, по графику функции определять свойства квадратичной функции.
Оборудование:
линейка.
План урока
- Организационный момент (1-2 мин)
- Актуализация знаний (10 мин)
- Изложение нового материала (15 мин)
- Закрепление нового материала (12 мин)
- Подведение итогов (3 мин)
- Задание на дом (2 мин)
Ход урока
- Организационный момент
Приветствие, проверка отсутствующих, сбор тетрадей.
- Актуализация знаний
Учитель: На сегодняшнем уроке мы изучим новую тему: "Функция ". Но для начала повторим ранее изученный материал.
Фронтальный опрос:
- Что называется квадратичной функцией? (Функция
, где заданные действительные числа, , действительная переменная, называется квадратичной функцией.)
- Что является графиком квадратичной функции? (Графиком квадратичной функции является парабола.)
- Что такое нули квадратичной функции? (Нули квадратичной функции значения
, при которых она обращается в нуль.)
- Перечислите свойства функции
. (Значения функции положительны при и равно нулю при ; график функции симметричен относительно ос ординат; при функция возрастает, при - убывает.)
- Перечислите свойства функции
. (Если , то функция принимает положительные значения при , если , то функция принимает отрицательные значения при , значение функции равно 0 только; парабола симметрична относительно оси ординат; если , то функция возрастает при и убывает при , если , то функция возрастает при , убывает при .)
- Изложение нового материала
Учитель: Приступим к изучению нового материала. Откройте тетради, запишите число и тему урока. Обратите внимание на доску.
Запись на доске: Число.
Функция .
Учитель: На доске вы видите два графика функций. Первый график , а второй . Давайте попробуем сравнить их.
Свойства функции вы знаете. На их основании, и сравнивая наши графики, можно выделить свойства функции .
Итак, как вы думаете, от чего будет зависеть направление ветвей параболы ?
Ученики: Направление ветвей обеих парабол будет зависеть от коэффициента .
Учитель: Совершенно верно. Так же можно заметить, что у обеих парабол есть ось симметрии. У первого графика функции, что является осью симметрии?
Ученики: У параболы вида осью симметрии является ось ординат.
Учитель: Верно. А что является осью симметрии параболы
?
Ученики: Осью симметрии параболы является линия, которая проходит через вершину параболы, параллельно оси ординат.
Учитель: Правильно. Итак, осью симметрии графика функции будем называть прямую, проходящую через вершину параболы, параллельную оси ординат.
А вершина параболы это точка с координатами . Они определяются по формуле:
Запишите формулу в тетрадь и обведите в рамочку.
Запись на доске и в тетрадях
- координаты вершины параболы.
Учитель: Теперь, чтобы было более понятно, рассмотрим пример.
Пример 1: Найдите координаты вершины параболы .
Решение: По формуле
имеем:
Ответ: координаты вершины параболы.
Учитель: Как мы уже отметили, ось симметрии проходит через вершину параболы. Посмотрите на доску. Начертите этот рисунок в тетради.
Запись на доске и в тетрадях:
Учитель: На чертеже: - уравнение оси симметрии параболы с вершиной в точке , где абсцисса вершины параболы.
Рассмотрим пример.
Пример 2: По графику функции определите уравнение оси симметрии параболы.
Уравнение оси симметрии имеет вид: , значит, уравнение оси симметрии данной параболы .
Ответ: - уравнение оси симметрии.
- Закрепление нового материала
Учите