Формирование понятия свойств арифметических действий у младших школьников
Курсовой проект - Педагогика
Другие курсовые по предмету Педагогика
?еского института.
Апробирование исследования осуществлялась в ходе экспериментальной работы.
Достоверность исследования определяется анализом теоретического, экспериментального материала, обработкой полученных результатов опытного исследования.
Структура исследования: данная курсовая работа состоит из введения, двух глав, выводов, заключения и списка использованной литературы.
Глава I. Развитие арифметики
1.1 Появление арифметических действий
Содержание курса арифметики в разные времена у разных народов было весьма различно. Индийцы, например, причисляли извлечение кубического корня к элементарным арифметическим операциям. С другой стороны, руководство профессора Пурбаха (1423-1491гг.) первого профессора Венского университета, читавшего лекции по математике, содержащий только материал, изучаемый ныне в начальной школе.
Л.Ф. Магницкий, определив арифметику или числительницу, как "художество честное, независимое и всем удобопонятное, многополезнейшее и многопохвальнейшее", рассматривает в своей книге пять "определений" или арифметических действий: "нумерацию или счисление, аддицию или сложению, субтракцию или вычитание, мультипликацию еже есть умножение и дивизио еже есть деление".
Различно было понимание того, что называется арифметическими действиями. В латинских учебниках, которыми в течение нескольких веков пользовались школы всех народов, эти действия назывались виды (действия) (от лат. species). Это наименование определения арифметических действий впервые встречается в рукописях XIII в. В XVI в. оно становится общеупотребительным и вытесняет термин часть арифметическая (от лат. рагs arthmetika). Индийские математики рассматривали шесть арифметических действий: сложение, вычитание, умножение, деление, возведение в степень и извлечение корней.
Сакробоско (XIII в) имеет их девять, как и многие авторы последующих веков: нумерация, сложение, вычитание, удвоение, умножение (деление пополам), деление, прогрессия, извлечение корней. Действие "прогрессия" рассматривало в большинстве случаев суммирование чисел натурального ряда, в редких случаях суммирование отдельно четных и нечетных чисел натурального ряда, и лишь в исключительных случаях суммирование двух простейших геометрических прогрессий 1, 2, 4, 8,... и 1, 3, 9, 27,...
Извлечение корней ограничивалось в большинстве случаев только квадратными корнями. Действие "нумерация" вошло в учебники в качестве особого арифметического действия в эпоху, когда борьба между сторонниками римского и индийского способов счисления была злободневной (XIII и XIV вв.).
Действие "удвоения" берет свое начало из Египта. Как уже указано, основные сведения о египетской математике черпаются из папируса Райнда, написанного писцом Ахмесом в эпоху 1800-1600 гг. до н.э. Он описан в главе о египетской нумерации.
Новейшие исследователи (Арчибальд, Вилейнтнер) опровергают существовавший взгляд, согласно которому египетская наука считалась чисто практической и эмпирической, задачи Ахмеса порой настолько абстрактны, что возникали непосредственно из практики.
Наши четыре действия над числами египтяне выполняли сложением, удвоением и делением пополам.
Удвоение являлось основной операцией; египетский язык имеет для этого и особую форму двойственного числа. Из прямых операций употреблялось еще только увеличение в десять раз. Вычитание выполнялось дополнением вычитаемого до уменьшаемого, деление - удваиванием.
Греки хотя и имели действие умножения, в житейской практике обычно употребляли египетский метод удвоения. О двух методах умножения чисел упоминает Платон.
В качестве особых арифметических действий ввел удвоение и медитацию в свой учебник неоднократно упоминавшийся самаркандский математик аль-Хорезми (начало XII в), пропагандировавший индийское счисление.
Так как индийцы этих действий не употребляли, то в этом нужно видеть собственную идею аль - Хорезми или влияние Египта через арабов.
Через перевод книги аль - Хорезми в XII в. на латинский язык эти действия вошли впервые европейские руководства Иордана Неморария (XIII в) и через него в монастырские школы. Лишь в конце XV столетия итальянский автор Лука Пачиоли заявляет, что удвоение и раздвоение чисел являются частными случаями умножения и деления и отбрасывает их.
Учебники для монастырских и сборных школ продолжали сохранять эти действия.
Из представителей университетской науки первыми от лишних действий отказались видные деятели математического образования в XVI в. Грамматеус (Шрейбер) в Венском университете и Гемма Фризиус.
Последний впервые дает определение: "арифметическим действием (от лат. Species) мы называем способ нахождения числа".
Однако даже передовой для своего времени учебник "Начало" Вольфа, еще в 1754 г. указывает, что число можно умножить без заучивания таблицы умножения - удвоением и сложением результатов.
Первое русское издание книги Вольфа 1770 г. ("Сокращение первых оснований математики") этого указания уже не содержит и ограничивается указанием "кто хочет иметь способность скоро умножение делать, тому должно пифагорову решетку (таблицу умножения) наизусть выучить и покамест, на память не затвердится, иметь перед собой".
Удвоение и египетский способ умножения при помощи удвоения оказались очень живучими и удержались в практике до последнего времени.
В зарубежной литературе этот способ умножения в наши