Факторные модели и процессы формирования дохода

Контрольная работа - Экономика

Другие контрольные работы по предмету Экономика

ьшими значениями b соответственно. Как видно из уравнения (1.6б), это связано с тем, что b является просто взвешенным средним чувствительностей ценных бумаг bi, в котором весами служат значения Xi. Таким образом, диверсификация приводит к усреднению факторного риска.

Однако по мере того как портфель становится более диверсифицированным, можно ожидать уменьшения нефакторного риска s2ep. Это можно показать, рассматривая уравнение (1.1 бв). Предположив, что в каждую ценную бумагу инвестирована одна и та же сумма, это уравнение может быть переписано при замене Х1 на 1/N следующим образом:

Величина внутри квадратных скобок является средним нефакторным риском для отдельных ценных бумаг. Но нефакторный риск портфеля составляет лишь 1/N часть этой величины из-за множителя 1/N перед скобками. По мере того как портфель становится более диверсифицированным, число N ценных бумаг в нем растет. При этом 1/Nуменьшается, что, в свою очередь, уменьшает нефакторный риск портфеля. Проще говоря, диверсификация уменьшает нефакторный риск.

 

3. Метод пространственной выборки

 

Метод пространственной выборки (gross-sectional approaches) менее распространен, чем метод временных рядов, но часто оказывается не менее мощным средством. Построение модели начинается с оценки чувствительности ценных бумаг к определенным факторам. Затем для некоторого периода времени оцениваются значения этих факторов на основе анализа доходностей ценных бумаг и их чувствительности к факторам. Этот процесс повторяется для большого числа временных интервалов, что позволяет дать оценки для стандартных отклонений факторов и их корреляций.

Заметим, что метод пространственной выборки совершенно отличен от метода временных рядов. В последнем методе известны значения факторов, а чувствительности к ним оцениваются. После чего анализ проводится для одной ценной бумаги на большом числе временных интервалов, затем для другой ценной бумаги и т.д. В методе пространственной выборки известны чувствительности, а оцениваются значения факторов. В этом методе чувствительности иногда называются атрибутивными (attribute). Анализ в этом методе проводится для одного временного интервала и группы ценных бумаг, затем для другого временного интервала и той же группы бумаг и т.д. С целью иллюстрации метода пространственной выборки мы переходим к рассмотрению примеров однофакторной и двухфакторной моделей.

Однофакторные модели

На рис. 1.3 приведен гипотетический пример связи между доходностями акций нескольких типов за определенный период времени и одним из атрибутов ценных бумаг - ставкой дивиденда - для каждого типа акций. Каждая точка относится к одному определенному типу акций, показывая их доходность и ставку дивиденда в рассматриваемом временном интервале. В этом примере акции с более высокой ставкой дивиденда имеют тенденцию к более высокой доходности, чем акции с низкой ставкой дивиденда. В то время как рис. 1.З (пример метода пространственных выборок) основан на использовании данных по различным типам акций для одного момента времени, рис. 1.1 (пример метода временных рядов) основан на данных по одному типу акций для различных моментов времени.

Для того чтобы получить количественное выражение связи, показанной на рис. 1.З, статистическим методом простой регрессии было проведено приближение точек прямой линией. Уравнение для прямой на рис. П.З имеет вид:

 

rit=4+0.5bit,

 

или в более общем виде:

 

rit=a1+bitFt,

где rit- ожидаемая доходность акций типа i в период t при условии, что фактическое значение фактора равнялось F1;

а1 - нулевой фактор в период r,it - ставка дивидендов акций типа i в период r,

Ft - фактическое значение фактора в период t.

 

 

Вертикальное смещение а: дает ожидаемую доходность типичных акций с нулевой ставкой дивиденда. Поэтому, как и в случае уравнения (1.1), оно называется нулевым фактором. На рис. 1.3 он равен 4%. Наклон, равный 0,5, соответствует приросту ожидаемой доходности на каждый процент ставки дивиденда. Поэтому он представляет собой фактическое значение фактора ставки дивиденда (Ft) в рассматриваемом временном интервале.

Из этого примера видно, что метод пространственной выборки использует чувствительности для оценки значений факторов. Поэтому такие факторы называются эмпирическими. В методе временных рядов, напротив, известные значения факторов используются для получения оценок чувствительности ценных бумаг. Такие факторы называются фундаментальными (fundamental).

Фактическая доходность по любой данной ценной бумаге может лежать выше или ниже прямой линии благодаря нефакторному компоненту доходности. Поэтому полное описание соотношений факторов в рассматриваемой однофакторной модели дается уравнением:

it =4 + 0,5bit + eit

 

где е обозначает нефакторную доходность ценной бумаги / во временном интервале t. Ценная бумага X имела ставку дивиденда 6%. Поэтому согласно уравнению она имела в этот период ожидаемую доходность, равную 7% (4 + 0,5 х 6). Поскольку ее фактическая доходность равнялась 9%, то ее нефакторная доходность составила +2% (9%-7%).

В периоды, подобные тому, акции с высокой ставкой дивиденда приносят больший доход, чем акции с низкой ставкой дивиденда. Это указывает на положительность фактора ставка дивиденда в этом временном интервале. Однако в другом временном интервале акции с низкой ставкой дивиденда могут дать большую доходность, чем акции с высокой ставкой дивиденда. Прямая регрессии на соответствующе