Биофизика мышечного сокращения

Дипломная работа - Биология

Другие дипломы по предмету Биология

Государственное образовательное учреждение высшего профессионального образования

Читинская Государственная Медицинская Академия

федерального агентства по здравоохранению и социальному развитию

Кафедра медицинской физики и информатики

КУРСОВАЯ РАБОТА

Тема: Биофизика мышечного сокращения

Чита - 2009 г.

ПЛАН

I. Введение

II. Сокращение скелетных мышц

. Миография

. Механические свойства мышцы

. Изотоническое и изометрическое сокращения

. Работа мышц

. Методы раздражения мышц

III. Потенциал покоя и потенциал действия скелетного мышечного волокна

. Одиночное сокращение

. Суммация сокращений и тетанус

. Моторные единицы

. Тонус скелетной мышцы

IV. Механизм мышечного сокращения

. Структура мышц

. Роль АТФ в мышечном сокращении

. Теории мышечного сокращения

V. Работа и сила мышц

VI. Утомление мышцы

. Эргография

VII. Гладкие мышцы

. Особенности гладких мышц

. Возбудимость и сокращение гладкой мышцы

. Тонус гладкой мышцы

. Автоматия гладких мышц

VIII. Вывод

I. Введение

Вся жизнедеятельность животных и человека неразрывно связана с механическим движением, осуществляемым мышцами. Все телодвижения, кровообращение, дыхание и прочие акты возможны благодаря наличию в организме мышц, обладающих специальным белковым сократительным комплексом - актомиозином.

Однако наличие сократительных элементов имеет значение не только при совершении вышеперечисленных макродвижений. В настоящее время накапливается все больше и больше данных о роли сократительных элементов в микропроцессах, в частности при активном транспорте веществ через мембраны и при движении цитоплазмы. Как было установлено, цитоплазма всех клеток находится в постоянном движении. По данным Камия, цитоплазма обладает колебательным, циркуляционным, фонтанирующим и другими видами движения, что, несомненно, играет большую роль в протекании метаболических процессов в клетках. В настоящее время нет единой точки зрения на причины происхождения этих движений цитоплазмы, однако наиболее вероятной является гипотеза функционирования сократительных элементов, подобных мышечным.

II. Сокращение скелетных мышц

мышца гладкая сокращение возбудимость

Основными физиологическими свойствами мышц являются их возбудимость, проводимость и сократимость. Последняя проявляется или в укорочении мышцы, или развитии напряжения.

Миография Для регистрации мышечного сокращения применяется методика миографии, т.е. графической регистрации сокращения с помощью рычажка, присоединенного к одному концу мышцы. Свободный конец рычажка чертит на ленте кимографа кривую сокращения - миограмму. Этот способ регистрации мышечного сокращения прост и не требует сложного оборудования, но имеет тот недостаток, что инерция рычажка и его трении по поверхности ленты кимографа несколько искажают запись. Во избежание этого недостатка теперь применяют специальный датчик, преобразующий механические изменения (линейные перемещения или усилия мышцы) в колебания силы электрического тока. Последние регистрируются с помощью шлейфного или катодного оiиллографа.

Точной методикой является также оптическая регистрация, производимая с помощью пучка света, отраженного от зеркальца, наклеенного на брюшко мышцы.

По своим механическим свойствам мышцы относятся к эластомерам - материалам, обладающим эластичностью (растяжимостью и упругостью). Если мышцу подвергнуть действию внешней механической силы, то она растягивается. Величина растяжения мышцы в соответствии с законом Гука будет пропорциональна величине деформирующей силы (в определенных пределах):

где ?l - абсолютное удлинение мышцы; l - начальная длина мышцы; F - деформирующая сила; S - площадь поперечного сечения мышцы; ? - коэффициент упругости. Величина отношения F/S называется механическим напряжением, а величина l/? - модулем упругости; он показывает величину напряжения, необходимого для удлинения тела в 2 раза относительно начальной длины.

По своим свойствам мышца приближается к каучуку, модуль упругости для обоих этих материалов равен примерно 10 кгс/см2. Мышцы обладают и другими свойствами, присущими каучуку. Как и при растяжении каучука, при сильном растяжении мышцы наблюдается локальная кристаллизация (упорядочение макромолекулярной белковой структуры фибриллярного типа). Это явление было изучено методом рентгеноструктурного анализа. При этом освобождается кристаллизационное тепло, в результате чего температура мышцы при растяжении повышается.

После того как внешнюю силу убирают, мышца восстанавливает свою длину. Однако восстановление не бывает полным. Наличие остаточной деформации характеризует пластичность мышцы - способность сохранять форму после прекращения действия силы. Таким образом, мышца не является абсолютно упругим телом, а обладает вязкоупругими свойствами. При очень сильном растяжении мышца ведет себя как нормальное упругое тело. В этом случае при растяжении температура мышцы понижается.

При сокращении мышцы развивается напряжение и совершается работа. Мышцы обладают сократительными и эластическими элементами. Поэтому возникающее напря