Биокерамика на основе фосфатов кальция

Методическое пособие - Химия

Другие методички по предмету Химия

?сах, 1-2 Дж/см2, позволяет получать методом ПЛАД фосфатно-кальциевые покрытия (в качестве мишени использовали таблетки из ГА) с необычно высокими показателями механических свойств: модуля Юнга (до 180 ГПа) и твердости (до 7,5 ГПа, измерено методом наноиндентирования) [349]. Эффект объясняют химическими превращениями молекулы ГА под воздействием лазерного и УФ-облучения, в частности протеканием реакции фотодиссоциации ГА с образованием безводного фосфата кальция и улетучиванием пятиокиси фосфора из продуктов реакции:

 

Са10(РО4)6(ОН)2 - Н2О > Са4О(РО4)2 + Са2Р2О7 + 4СаО + Р2О5 (80)

 

Продукты реакции обладают повышенной реакционной способностью по отношению к подложке, изготовленной из титанового сплава, обеспечивая получение плотного тонкокристаллического покрытия, содержащего помимо ГА и другие кальций-фосфатные фазы.

Покрытия, получаемые с использованием Nd:YAG лазера при высоких флэнсах, по-видимому, имеют существенно разупорядоченную, аморфизованную структуру, образующуюся в результате плавления и частичного химического разложения материала мишени в лазерной плазме. Материалы с такой структурой обладают низкой способностью к релаксации механических напряжений посредством пластической деформации и, следовательно, высокой твердостью. Известно, что пленки, осажденные с использованием Nd:YAG лазера содержат больше стеклообразной фазы по сравнению с пленками, осажденными эксимерным лазером, вследствие пониженного коэффициента поглощения излучения материалом ГА-мишени [350]. Важное значение для формирования структуры покрытия имеет температура подложки. Осаждение на подложку при комнатной температуре приводит к большей аморфизации покрытия по сравнению с нанесением на подогретую подложку. С повышением флюэнса усиливается испарение материала мишени и его термическое разложение [339]. Эти процессы увеличивают разупорядоченность структуры. Фосфатно-кальциевые покрытия, нанесенные методом ПЛАД при высоких флюэнсах, как было показано, обладают хорошей биосовместимостью с остеобластами, способствуя их пролиферации [339]. Таким образом, метод ПЛАД позволяет гибко варьировать параметры структуры и показатели свойств кальций-фосфатных покрытий в широких пределах.

Электронно-лучевое осаждение

Другим перспективным физическим методом получения биосовместимых покрытий является электронно-лучевое осаждение. Данный способ успешно использован для нанесения покрытий карбида титана на титановые имплантаты с целью защиты последнего от коррозии жидкостями организма и придания шероховатости поверхности. Однако известно относительно мало исследований, направленных на нанесение кальций-фосфатных покрытий. В работе [351] изучали осаждение ГА на кремниевые подложки (модельный материал) с использованием спеченного ГА в качестве мишеней. Осаждение проводили в вакууме 510-4 Па при ускоряющем напряжении 6 кВ и токе пучка 110 мА, температуре подогрева подложки 1600С. Толщина пленок составила примерно 500 нм. Осажденные пленки были аморфными, аморфизация сохранялась после отжига при 7000С. Полная кристаллизация покрытия была достигнута только отжигом при 12000С в течение 3 ч, причем на дифрактограммах присутствуют основные пики ГА. Однако соотношение Са/Р в материале покрытия изменялось в зависимости от температуры термической обработки (рис. 73), что является результатом изменения последовательности испарения фосфора и кальция и должно оказывать существенное влияние на биологическое поведение покрытия. Прочность адгезии покрытия к подложке (скратч-тест) снижалась с повышением температуры отжига. Многие вопросы, связанные с электронно-лучевым осаждением фосфатно-кальциевых покрытий, такие как влияние температуры подогрева подложки, величины смещения ускоряющего напряжения и др., являются предметом дальнейших исследований, но метод электронно-лучевого осаждения может рассматриваться как весьма перспективный для получения тонких пленок фосфатов кальция, даже в производственных масштабах.

Биомиметическое формирование покрытий

Связь имплантируемого материала с костной тканью развивается через стадию биомиметического формирования биологически активного слоя карбонат-содержащего апатита на поверхности материала. Образование такого слоя инициируется переходом ионов кальция из имплантируемого материала в жидкость (СБФ), моделирующую по своему составу внеклеточную жидкость организма. Такая жидкость обычно близка про составу к плазме крови и содержит фосфат- и карбонат-ионы. В результате изменения произведения ионных активностей апатита в жидкости и при наличии соответствующих центров, происходит биомиметическая кристаллизация апатита на поверхности материала. Биомиметические апатитовые покрытия могут быть сформированы и на инертном, устойчивом к растворению материале, например полимерном. В этом случае материал последовательно погружают в СБФ для создания центров кристаллизации (обычно, СБФ с размещенными в нем гранулами биостекла, содержащего Са и кремнезем) и затем в раствор, пересыщенный по отношению к апатиту для кристаллизации последнего на созданных центрах. Толщина биомиметического слоя возрастает во времени, скорость его формирования увеличивается со степенью пересыщения СБФ. Метод успешно был использован для нанесения покрытий на различные полимерные материалы, в том числе в виде волокон или тканей, из которых могут быть созданы имплантируемые конструкции, например матриксы для клеточных технологий регенерации