Титан и его сплавы
Информация - Разное
Другие материалы по предмету Разное
?ешев;
б) плотность алюминия значительно меньше плотности титана, поэтому введение алюминия повышает удельную прочность сплавов;
в) алюминий эффективно упрочняет a -, (a +b )- и b - сплавы при сохранении удовлетворительной пластичности;
г) с увеличением содержания алюминия повышается жаропрочность сплавов;
д) алюминий повышает модули упругости;
е) с увеличением содержания алюминия в сплавах уменьшается их склонность к водородной хрупкости.
Однако с увеличением содержания алюминия повышается чувствительность титановых сплавов к солевой коррозии, а также уменьшается их технологическая пластичность. Поэтому если есть опасность контакта сплавов с поваренной солью при работе в интервале температур 250-550С или необходима высокая технологическая пластичность, содержание алюминия в титановых сплавах следует ограничивать.
Титановые a -сплавы, помимо Al, легируют нейтральными упрочнителями (Sn и Zr). Весьма ценным свойством a -сплавов титана является их хорошая свариваемость; эти сплавы даже при значительном содержании алюминия однофазны, поэтому не возникает охрупчивания шва и околошовной зоны.
К недостаткам a -сплавов относится их сравнительно невысокая прочность, сплавы этого класса термически не упрочняются. При содержании более 6% (по массе) Al технологическая пластичность сплавов невелика. С увеличением содержания алюминия повышаются рабочие температуры титановых a -сплавов. Однако при этом возникает опасность их охрупчивания в результате выделения фазы a 2. Сплавы этого класса, хотя и в меньшей степени, чем титан, склонны к водородной хрупкости.
Сплав ВТ5, содержащий 5%Al отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Применяются для деталей, работающих при температурах до 400С.
Сплав ВТ5-1, относящийся к системе Ti-Al- Sn более технологичный, чем BT5 и предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных до 450С.
Дисперсионно твердеющие a -сплавы представлены английским сплавом Ti+2%Cu. В отожженном и закаленном состоянии сплав малопрочен и пластичен и имеет такую же технологичность, как и технический титан. При старении сплав упрочняется на 30-50% за iет дисперсионного твердения и приобретает sВ=750-800 МПа. Из сплава Ti+2%Cu в Англии изготовляют листы и полосы. Этот сплав сваривается, причем пластичность сварного соединения практически такая же, как у основного металла.
В псевдо-a -сплавы для повышения прочности и жаропрочности при сохранении достаточной технологичности и свариваемости наряду с алюминием следует вводить b -стабилизаторы. Псевдо-a -сплавы при одинаковой с a -сплавами пластичности обладают на 10-20% более высокой прочностью, что обусловлено существенным измельчением зерна при переходе от a - к (a +b ) -структуре. При комнатной температуре псевдо-a -сплавы отличаются более высокой технологической пластичностью по сравнению с a -сплавами.
Псевдо-a -сплавы отличаются высокой термической стабильностью, хорошей свариваемостью. Существенный недостаток псевдо-a -сплавов - их высокая склонность к водородной хрупкости.
Эту группу представляют сплавы системы Ti-Al-Mn (ОТ4-0; ОТ4-1; ОТ4; ВТ4; ОТ4-2), обладают высокой технологической пластичностью. Сплавы хорошо свариваются всеми видами сварки. Недостатки этих сплавов: а) сравнительно невысокая прочность и жаропрочность; б) большая склонность к водородной хрупкости. С повышением содержания алюминия и марганца в этой серии сплавов прочность их возрастает, а пластичность и технологичность ухудшаются.
К этой группе принадлежат также сплавы ВТ20, ВТ18.
Сплав ВТ20 разрабатывали как более прочный и жаропрочный листовой сплав по сравнению с ВТ5-1. Упрочнение сплава ВТ20 обусловлено его легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия. Сплав предназначен для изготовления изделий, работающих длительно при температурах до 500С.
Сплав ВТ18 относится к наиболее жаропрочным титановым сплавам; он может длительно работать при температурах 550-600С. Высокая жаропрочность сплава обусловлена большим содержанием в нем алюминия и циркония. Однако, в отличие от других псевдо-a -сплавов сплав ВТ18 плохо сваривается.
Большинство a - и псевдо-a -сплавов применяют в отожженном состоянии.
Наиболее благоприятным сочетанием всех свойств отличаются двухфазные сплавы, состоящие из a +b - фаз. Эти сплавы характеризуются лучшей технологической пластичностью в отожженном состоянии по сравнению с a -сплавами, высокой прочностью, способностью к термическому упрочнению закалкой , меньшей склонностью к водородной хрупкости по сравнению с a и псевдо-a сплавами.
В отличие от a - и псевдо-a -сплавов a +b сплавы существенно упрочняются в результате закалки и старения.
Механические свойства отожженных (a +b )-сплавов существенно зависят от характера микроструктуры. Наибольшие различия наблюдаются для сплавов с зернистой и пластинчатой структурой. Для сплавов с зернистой структурой характерны высокая циклическая прочность, пластичность, технологичность.
Сплавы с пластинчатой структурой отличаются высокой вязкостью разрушения, ударной вязкостью, жаропрочностью при пониженных характеристиках пластичности и циклической прочности. Высокая вязкость разрушения титановых сплавов с такой структурой обус