Типы транспортировки энергоресурсов

Дипломная работа - Физика

Другие дипломы по предмету Физика

?ечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.

У солнечной энергии два основных преимущества. Во-первых, ее много и она относится к возобновляемым энергоресурсам: длительность существования Солнца оценивается приблизительно в 5 млрд. лет. Во-вторых, ее использование не влечет за собой нежелательных экологических последствий. Однако использованию солнечной энергии мешает ряд трудностей. Хотя полное количество этой энергии огромно, она неконтролируемо рассеивается. Чтобы получать большие количества энергии, требуются коллекторные поверхности большой площади. Кроме того, возникает проблема нестабильности энергоснабжения: солнце не всегда светит. Даже в пустынях, где преобладает безоблачная погода, день сменяется ночью. Следовательно, необходимы накопители солнечной энергии. И наконец, многие виды применения солнечной энергии еще как следует, не апробированы, и их экономическая рентабельность не доказана.

Можно указать три основных направления использования солнечной энергии: для отопления (в том числе горячего водоснабжения) и кондиционирования воздуха, для прямого преобразования в электроэнергию посредством солнечных фотоэлектрических преобразователей и для крупномасштабного производства электроэнергии на основе теплового цикла.

ЭНЕРГИЯ ВЕТРА. Ветер - неограниченный ресурс для производства электроэнергии. Он есть везде, бесконечен, экологически чист. Если в прошлом энергию ветра использовали, как правило, для повышения эффективности физического труда (для перемолки зерна или в качестве водяного насоса), то в настоящее время энергию ветра применяют в основном для выработки электроэнергии (ветер вращает лопасти электрогенератора).

До середины 1990-х гг. наибольшее распространение получили малые и средние ветроэнергетические установки мощностью от 100 до 500 кВт. В последние годы началось серийное производство ветрогенераторов мощностью до 2000 кВт. Их ротор имеет диаметр до 80 м, а высота башни достигает 120 м и более. География мировой ветроэнергетики за последние десятилетия претерпела довольно существенные изменения. До середины 1990-х гг. по суммарной мощности ветроэлектростанций первое место занимали США: в 1985 г. на эту страну приходилось 95% мировых мощностей. Почти все они были сконцентрированы в штате Калифорния. Во второй половине 1990-х гг. мировое лидерство перешло к Западной Европе, где уже в 1996 г. было сосредоточено 55% мировых мощностей ветроэнергетических установок. Десять лет назад ветроэнергетические установки Западной Европы обеспечивали бытовые потребности в электроэнергии примерно 3 млн. человек.

 

 

В последние годы ветроэнергетика развивалась более высокими темпами, чем энергетика, использующая остальные виды альтернативных источников энергии. Объём выработки электроэнергии из ветра в период с 2000 г. по 2006 г. вырос в 4 раза. Темпы роста рынка ветрогенераторов в мире за последние несколько лет составляют 25-30%. На конец 2006 г. суммарная мощность всех ветрогенераторов в мире оценивалась в 74 ГВт. Суммарная мощность всех ветрогенераторов, установленных в 2006 г. составила 15,2 ГВт. Общая стоимость ветрогенераторов, установленных в 2006 г. составила 23 млрд долл. США (или 1500 долл. США за 1 кВт).

И хотя энергия ветра составляет лишь около 1% от общей величины выработки электроэнергии в мире, для некоторых стран этот показатель значительно выше. В частности, доля ветряной электроэнергии в Дании составляет 20%, в Испании - 9%, в Германии - 7%.

 

Как распределяются ветроэнергетические мощности по странам мира? На первом месте уверенно расположилась Германия, в которой установленная мощность ветрогенераторов составляет 20,6 ГВт. Далее следуют Испания (11,6 ГВт), США (11,6 ГВт), Индия (6,2 ГВт), Дания (3,1 ГВт). Наибольшие мощности по ветроэнергетике в 2006 г. были введены в США (2,4 ГВт), Германии (2,2 ГВт), Индии (1,8 ГВт), Испании (1,5 ГВт), Китае (1,3 ГВт), Франции (0,8 ГВт).

ГИДРОЭНЕРГИЯ - энергия , сосредоточенная в потоках водных масс в русловых водотоках и приливных движениях. Чаще всего используется энергия падающей воды.

Для повышения разности уровней воды, особенно в нижних течениях рек, сооружаются плотины .

Гидроэнергетика дает почти треть электроэнергии, используемой во всем мире. Норвегия, где электроэнергии на душу населения больше, чем где-либо еще, живет почти исключительно гидроэнергией.

На гидроэлектростанциях (ГЭС) и гидроаккумулирующих электростанциях (ГАЭС) используется потенциальная энергия воды, накапливаемой с помощью плотин.

У основания плотины расположены гидротурбины, приводимые во вращение водой (которая подводится к ним под нормальным давлением) и вращающие роторы генераторов электрического тока.

Существуют очень крупные ГЭС. Широко известны две большие ГЭС в России: Красноярская (6000 МВт) и Братская (4100 МВт). Самая крупная ГЭС в США - Грэнд-Кули полной мощностью 6480 МВт. В 1995 на гидроэнергетику приходилось около 7% электроэнергии, вырабатываемой в мире.

Гидроэнергия - один из самых дешевых и самых чистых энергоресурсов. Он возобновляем в том смысле, что водохранилища пополняются приточной речной и дождевой водой. Остается под вопросом целесообразность строитель?/p>