Технология извлечения знаний из нейронных сетей: апробация, проектирование ПО, использование в психо...

Дипломная работа - Математика и статистика

Другие дипломы по предмету Математика и статистика

?арламент

  • Политика
  • Наука
  • Политик
  • Ученый
  • Теорема
  • Выборы
  • Коммунизм
  • Доказательство
  • Россия
  • Америка
  • Китай
  • Израиль
  • Религия
  • Бог
  •  

    1. Плотный рыхлый
    2. Молодой старый
    3. Светлый темный
    4. Разумный неразумный
    5. Холодный горячий
    6. Быстрый медленный
    7. Близкий далекий
    8. Пугливый бесстрашный
    9. Страшный не страшный
    10. Спокойный беспокойный
    11. Веселый грустный
    12. Удобный неудобный
    13. Красивый некрасивый
    14. Опасный безопасный
    15. Приятный неприятный
    16. Ручной дикий
    17. Утонченный грубый
    18. Умный глупый
    19. Шумный тихий
    20. Ласковый грубый
    21. Большой маленький
    22. Дружественный враждебный
    23. Мягкий твердый
    24. Добрый злой
    25. Активный пассивный
    26. Хороший плохой
    27. Сильный слабый
    28. В экспериментах отыскивался минимальный набор координат смысла, по которому можно восстановить все остальные с точностью до тенденции (т.е. с точностью до 3 баллов). Это делалось при помощи нейросетевого имитатора NeuroPro. Следует отметить, что предсказание с точностью до 3 баллов фактически соответствует переходу от 21-балльных шкал (от 10 до 10) к традиционным 7-балльным (от 3 до 3).

    С помощью NeuroPro возможно получение показателей значимости входных сигналов для принятия нейросетью решения, показателей чувствительности выходного сигнала сети к изменению входных сигналов, показателей значимости и чувствительности по отдельным примерам выборки.

    За начальную архитектуру была взята слоистая нейронная сеть, состоящая из трех слоев по 10 нейронов в каждом. Далее проводились последовательно следующие операции.

    1. Обучение нейронной сети с максимальной допустимой ошибкой обучения 0.49 балла (такая ошибка приводит к тому, что после округления ошибка обучения фактически равна 0). Как показал опыт, такой ошибки обучения чаще всего достаточно для предсказаний с требуемой точностью, то есть для ошибки обобщения, меньшей 3 баллов.
    2. Из входных сигналов выбирался наименее значимый и исключался, после чего проводилось повторное обучение нейросети с новыми входными сигналами и прежней ошибкой обучения.

    Эта процедура проводилась до тех пор, пока нейросеть могла обучиться. В результате этих операций были получены минимальные определяющие наборы признаков (т.е. наборы входных сигналов, оставшиеся после сокращения их числа).

    Для разных людей получены очень разные результаты (первые результаты представлены в [87]), совсем непохожие на результаты Осгуда. Вот типичные примеры:

    Определяющий набор признаков 1-го человека (размерность 7):

    Умный глупый, шумный тихий, разумный неразумный, плотный рыхлый, дружественный враждебный, страшный не страшный, опасный безопасный.

    2-го человека: сильный слабый, приятный неприятный, опасный безопасный, страшный не страшный, дружественный враждебный, удобный неудобный (размерность 6).

    3-го человека: приятный неприятный, опасный безопасный (размерность 2). Представляет интерес, что Осгудовские признаки почти не представлены в большинстве наборов. В связи с этим было решено проверить, можно ли предсказать значения произвольно выбранных признаков при помощи набора Осгуда (ошибка обучения в экспериментах допускалась 0.49 балла). Практически во всех случаях нейронные сети обучались с приемлемой ошибкой обучения, но ошибка обобщения в экспериментах со скользящим контролем (нейронные сети обучались по всем словам, кроме 2-х 3-х, а потом тестировались на этих словах) часто была недопустимо велика (5-9 баллов). После этого проводились следующие эксперименты: нейронная сеть обучалась предсказывать значения параметров по уже определенному минимальному набору признаков на одной половине слов, далее она тестировалась на словах из другой половины.

    При этом для большинства слов нейронные сети давали удовлетворительные прогнозы по всем параметрам (с точностью до 3 баллов), но почти во всех случаях обнаруживались одно - два слова, для которых сразу по нескольким признакам ошибка нейронных сетей была очень велика.

     

    5.2. MAN-многообразия

     

    Итак, для каждого человека обнаруживается многообразие сравнительно малой размерности, в небольшой окрестности которого лежат почти все слова.

    При осмыслении этого возникает гипотеза, связанная с тем, что отношение человека к большинству вещей, событий и т.д. не индивидуально, а сформировано культурой, в которой этот человек рос, его окружением и поэтому зависит от сравнительно небольшого числа признаков. В связи с этим и могли появиться многообразия малой размерности, в небольшой окрестности которых лежат почти все слова. Назовем их манмногообразиями (от немецкого неопределенного местоимения man (некто)). Вероятно, для каждой определенной культуры имеется небольшое количество различных ман-многообразий, специфичных для нее. В ходе воспитания человек присваивает одно из типичных манмногообразий. Например, определяющий набор признаков 3-го человека представляется основным набором признаков и для животных: опасность и приятность имеют прямой химический аналог и соответствуют уровню адреналина, эндорфинов и энкефалинов.

    Обнаружено, что у большинства людей есть слова, которые неожиданно "выпадают" из ман-многообразий, отстоят от них довольно далеко. Вероятно, это слова, с которыми у человека связаны какие-либо сильные переживания, ощущения, что приводит к появлению "индивидуальности" оценки ?/p>