Теория графов. Методические указания по подготовке к контрольным работам по дисциплине «Дискретная м...

Методическое пособие - Математика и статистика

Другие методички по предмету Математика и статистика

удет строиться с конца, то есть, начиная с вершины v6. Для этого выбираем минимальное из чисел, стоящих в строке, соответствующей v6 в таблице. Это число 21 длина минимального искомого пути. В первый раз такая длина была получена при количестве шагов, равном 4. В вершину v6 мы можем попасть за один шаг из вершин v1 и v7 (длина соответствующих дуг 8 и 5 соответственно данные из матрицы C(D)). Выбираем минимальную по длине из этих дуг. Далее, в вершину v7 можно попасть из v4 и v5(длина соответствующих дуг 7 и 3 соответственно). Продолжая аналогичным образом, найдем искомый путь за 4 шага минимальной длины из вершины v2 в v6: v2 v3 v5 v7 v6.

 

 

 

 

 

Задание 4. Эйлеровы циклы и цепи

 

Найти Эйлерову цепь в неориентированном графе.

Исходя из утверждений 1 и 2, чтобы найти Эйлерову цепь, нужно соединить две вершины с нечетными степенями фиктивным ребром. Тогда задача сводится к нахождению Эйлерова цикла по приведенному ниже алгоритму. Из найденного цикла удаляется фиктивное ребро, тем самым находится искомая Эйлерова цепь.

 

Алгоритм выделения эйлерова цикла в связном мультиграфе с четными степенями вершин

  1. Выделим из G цикл 1. (так как степени вершин четны, то висячие вершины отсутствуют). Положим l=1, G=G.
  2. Удаляем из G ребра, принадлежащие выделенному циклу 1. Полученный псевдограф снова обозначаем как G. Если в G отсутствуют ребра, то переходим к шагу 4. Если ребра есть, то выделяем из G цикл l+1 и переходим к шагу 3.
  3. Присваиваем l:=l+1 и переходим к шагу 2.
  4. По построению выделенные циклы содержат все ребра по одному разу. Если l:=1, то искомый Эйлеров цикл найден (конец работы алгоритма). В противном случае находим циклы, содержащие хотя бы по одной общей вершине (в силу связности графа это всегда можно сделать). Склеиваем эти циклы. Повторяем эти операции, пока не останется один цикл, который является искомым.

 

Пример.

Найдем Эйлерову цепь в неориентированном графе G, изображенном на рис. 10.

Прежде, чем приступать к нахождению Эйлеровой цепи, необходимо проверить степени вершин графа G ? согласно утверждению 2, для существования Эйлеровой цепи, необходимо и достаточно, чтобы в графе G ровно 2 вершины нечетной степени.

 

Рис. 10.

 

В рассматриваемом графе нечетные степени имеют вершины v3 и v1 (степень этих вершин равна 3). Соединяя эти вершины фиктивным ребром так, как показано на рис. 11, получаем граф G:

 

Рис. 11.

 

Поскольку в конечном итоге будет получена цепь, то очевидно, что началом и концом этой цепи будут вершины с нечетными степенями. Поэтому, следуя описанному выше алгоритму, будем циклы i так, чтобы хотя бы один из них начинался или кончался на вершинах v3 или v1.

Пусть цикл 1 составят ребра, проходящие через следующие вершины: v3 v4 v7 v6 v1 v2 v3. Согласно алгоритму, удаляем из G все ребра, задействованные в цикле 1. Теперь граф G будет таким, как показано на рис. 12.

Составляем следующий цикл 2: v4 v5 v6 v2 v5 v7 v4. Граф G после удаления ребер, составляющих цикл 2, изображен на рис. 13.

 

Рис.12Рис. 13

Очевидно, что последний цикл 3 будет состоять из v3 v5 v1|v3, где последнее ребро, соединяющее вершины v1 и v3 фиктивно. После удаления ребер, составляющих цикл 3, в графе G не останется ни одного ребра.

Теперь по общим вершинам склеиваем полученные циклы. Поскольку 1 и 2 имеют общую вершину v4, то, объединяя их, получим следующий цикл: v3 v4 v5 v6 v2 v5 v7 v4 v7 v6 v1 v2 v3. Теперь склеим получившийся цикл с циклом 3: v3 v4 v5 v6 v2 v5 v7 v4 v7 v6 v1 v2 v3 v5 v1|v3. Удаляя фиктивное ребро, получаем искомую Эйлерову цепь: v3 v4 v5 v6 v2 v5 v7 v4 v7 v6 v1 v2 v3 v5 v1.

 

Задание 5. Минимальное остовное дерево

 

Найти минимальное остовное дерево в неориентированном нагруженном графе.

 

Алгоритм выделения минимального остовного дерева в неориентированном нагруженном графе G

  1. Выберем в графе G ребро минимальной длины. Вместе с инцидентными ему двумя вершинами оно образует подграф G2 графа G. Положим

    i:=2.

  2. Если i=n(G), то задача решена и Gi искомое минимальное остовное дерево графа G. Иначе переходим к шагу 3).
  3. Строим граф Gi+1. Для этого добавим к графу Gi новое ребро минимальной длины из оставшихся, которое инцидентно какой-либо вершине графа Gi и одновременно вершине, не содержащейся в Gi. Вместе с этим ребром включаем в Gi+1 и эту инцидентную ему вершину. Присваиваем i:=i+1 и переходим к шагу 2).
  4.  

Пример.

Найдем минимальное остовное дерево в неориентированном нагруженном графе, изображенном на рис.14.

 

Рис.14.

 

Обозначим ребро, соединяющее вершины vi и vj через xij.

Для удобства использования приведенного выше алгоритма решения поставленной задачи, составим матрицу длин ребер. В рассматриваемом графе количество вершин n=8, следовательно, матрица длин ребер графа G будет иметь размерность 88 и выглядеть следующим образом:

Согласно приведенному выше алгоритму, выбираем ребро минимальной д