Теоретические основы математических и инструментальных методов экономики
Информация - Разное
Другие материалы по предмету Разное
?я и проверки причинных связей между переменными.
Экспериментальные данные - это результаты измерения некоторых признаков объектов, выбранных из большой совокупности объектов.
Часть объектов исследования, определенным образом выбранная из более обширной совокупности, называется выборкой, а исходная совокупность, из которой взята выборка,- генеральной (основной) совокупностью.
Исследования, в которых участвуют все без исключения объекты, составляющие генеральную совокупность, называются сплошными исследованиями. Может использоваться выборочный метод. Суть его в том, что для обследования привлекается лишь выборка из генеральной совокупности, но по результатам этого обследования судят о свойствах всей генеральной совокупности.
Важнейшая характеристика выборки - объем выборки, т. е. число элементов в ней; его принято обозначать символом n.
Предметом изучения в статистике являются изменяющиеся (варьирующиеся) признаки, которые иногда называются статистическими. Они делятся на качественные и количественные.
Качественными признаками объект обладает либо не обладает. Они не поддаются непосредственному измерению (например, спортивная специализация, квалификация, национальность, территориальная принадлежность и т. п.).
Количественные признаки представляют собой результаты подiета или измерения. В соответствии с этим они делятся на дискретные и непрерывные.
Эмпирические распределения представляют собой распределения элементов выборки по значениям изучаемого признака. Построение эмпирических распределений - необходимый этап применения статистических методов.
Можно использовать следующий эвристический принцип - будем iитать, что исследуемая нами генеральная совокупность близка к гипотетической генеральной совокупности, состоящей только из значений х1,...,xn, содержащихся в ней в равной пропорции, т.е. случайная величина близка к случайной величине , принимающей п значений х1,...,xn с вероятностями 1/n (это, действительно, максимум информации о значениях случайной величины и их вероятностях, которую можно извлечь из выборки). Распределение случайной величины называется эмпирическим распределением случайной величины , а ее функция распределения - эмпирической функцией распределения. Очевидно, что каждой выборке соответствует своя эмпирическая функция распределения, т.е. можно сказать, что - случайная функция. представляет собой ступенчатую функцию, возрастающую от 0 до 1 со скачками высотой 1/n в точках х1,...,xn (очевидно, если некоторое значение повторяется k раз, то ему будет соответствовать один скачок величиной k/n). Можно определить эмпирическую функцию формулой , где nx - число значений выборки, не превосходящих х.
Поскольку эмпирическая функция распределения является оценкой для F(x) (можно доказать, что при вероятность того, что максимальное расхождение между и F(x) не превзойдет заданного малого числа , стремится к единице), можно взять характеристики в качестве оценок характеристик генерального распределения.
Ниже мы приводим полученные таким образом формулы для некоторых выборочных характеристик.
Название характеристикиФормула
Выборочный момент порядка k
Выборочный центральный момент
Порядка k
Выборочное среднее - первый нецентральный моментВыборочная дисперсия - (см. в главе 2 обоснование деления на n-1 вместо деления на n)
Выборочный коэффициент асимметрии
Выборочный коэффициент экiесса
выборочное среднее = (x1 + x2 +...+ xn) / n оценка математического ожидания
медиана = Xk+1 , при n = 2k+1
= (Xk +Xk+1) / 2 , при n = 2k
мода такое значение xm, которое встречается в выборке чаще всего
размах R = X max - X min
выборочная дисперсия - оценка дисперсии
среднее квадратичное отклонение S = - оценка б
Статистической оценкой теоретического распределения называют функцию f(X1,X2,тАж,Xn) от наблюдаемых С.В. X1,X2,тАж,Xn. Точечной называют статистическую оценку, которая определяется одним числом *=f(x1,x2,тАж,xn), где х1,х2,тАж,xn результаты n наблюдений над количественным признаком Х (выборка). Несмещенной называют точечную оценку, мат. ожидание которой равно оцениваемому параметру при любом объеме выборки. Смещенной называют точечную оценку, мат. ожидание которой не равно оцениваемому параметру. Несмещенной оценкой генеральной средней (мат. ожидания) служит выборочная средняя: Хв=(сумма по i от 1 до k nixi)/n, где xi варианта выборки, ni частота варианты xi, n=сумма по i от 1 до k ni объем выборки. Смещенной оценкой генеральной дисперсии служит выборочная дисперсия: Dв=(сумма по i от 1 до k ni(Хi-Xв)*2)/n. Несмещенной оценкой генеральной дисперсии служит исправленная выборочная дисперсия: s*2=n/n-1*Dв=сумма ni(xj Xв)*2/n-1. Метод моментов точечной оценки неизвестных параметров заданного распределения состоит в приравнивании теоретических моментов соответствующим эмпирическим моментам того же порядка. Если распределение определяется одним параметром, то для его отыскания приравнивают один теоретический момент одному эмпирическому моменту того же порядка. Например, можно приравнять начальный теоретический момент первого порядка начальному эмпирическому моменту первого порядка: v1=M1. Учитывая, что v1=M(X) и М1=Хв, получим М(Х)=Хв. Если распределение определяется двумя параметрами, то приравнивают два теоретических момента двум соответствующим эмпирическим моментам того