Сущность, модели, границы применения метода производственной функции
Курсовой проект - Экономика
Другие курсовые по предмету Экономика
»енных натуральных или стоимостных единицах.
Несмотря на то, что понятие производство может представиться очень широким, нечетко выраженным и даже расплывчатым, поскольку в реальной жизни под производством понимается и предприятие, и стройка, и сельскохозяйственная ферма, и транспортное предприятие, и очень крупная организация типа отрасли народного хозяйства, тем не менее, экономико-математическое моделирование выделяет нечто общее, присущее всем этим объектам. Этим общим является процесс преобразования первичных ресурсов (производственных факторов) в конечные результаты процесса. Поэтому основным исходным понятием в описании экономического объекта становится технологический способ, который представляется обычно как вектор v затратвыпуска, включающий в себя перечисление объемов затрачиваемых ресурсов (вектор x) и сведения о результатах их преобразования в конечные продукты или другие характеристики (прибыль, рентабельность и т.п.) (вектор y):
v = ( x ; y).
Размерность векторов x и y , а также способы их измерения (в натуральных или стоимостных единицах) существенно зависят от изучаемой проблемы, от уровней, на которых ставятся те или иные задачи экономического планирования и управления. Совокупность векторов технологических способов, которые могут служить описанием (с допустимой точки зрения исследователя точностью) производственного процесса, реально осуществимого на некотором объекте, называется технологическим множеством V данного объекта. Для определенности мы будем полагать, что размерность вектора затрат x равна N , а вектора выпуска y соответственно M . Таким образом, технологический способ v является вектором размерности ( M + N ), а технологическое множество Среди всех технологических способов, осуществимых на объекте, особое место занимают способы, которые выгодно отличаются от всех прочих тем, что они требуют либо меньших затрат при одинаковом выпуске, либо соответствуют большему выпуску при одинаковых затратах. Те из них, которые занимают в определенном смысле предельное положение в множестве V , представляют особый интерес, поскольку они являются описанием допустимого и предельно выгодного реального производственного процесса.
Скажем, что вектор предпочтительнее, чем вектор с обозначением если выполняются следующие условия:
1)
2)
и при этом имеет место по крайней мере одно из двух:
а) существует такой номер i 0 , что
б) существует такой номер j 0 , что
Технологический способ называется эффективным, если он принадлежит технологическому множеству V и не существует другого вектора который был бы предпочтительнее . Приведенное определение означает, что эффективными считаются те способы, которые не могут быть улучшены ни по одной затратной компоненте, ни по одной позиции выпускаемой продукции, без того чтобы не перестать быть допустимыми. Множество всех технологически эффективных способов обозначим через V* . Оно является подмножеством технологического множества V или совпадает с ним. По существу задача планирования хозяйственной деятельности производственного объекта может быть интерпретирована как задача выбора эффективного технологического способа, наилучшим образом соответствующего некоторым внешним условиям. При решении такой задачи выбора достаточно существенным оказывается представление о самом характере технологического множества V , а также его эффективного подмножества V* .
В ряде случаев оказывается возможным допустить в рамках фиксированного производства возможность взаимозаменяемости некоторых ресурсов (различных видов топлива, машин и работников и т.п.). При этом математический анализ подобных производств основывается на предпосылке о континуальном характере множества V , а следовательно, на принципиальной возможности представления вариантов взаимной замены при помощи непрерывных и даже дифференцируемых функций, определенных на V . Указанный подход получил свое наибольшее развитие в теории производственных функций.
С помощью понятия эффективного технологического множества производственную функцию (ПФ) можно определить как отображение
y = f ( x ),
где V* .
Указанное отображение, вообще говоря, является многозначным, т.е. множество f ( x ) содержит более чем одну точку. Однако для многих реалистичных ситуаций производственные функции оказываются однозначными и даже, как сказано выше, дифференцируемыми. В наиболее простом случае производственная функция есть скалярная функция N аргументов:
Здесь величина y имеет, как правило, стоимостный характер, выражая объем производимой продукции в денежном выражении. В качестве аргументов выступают объемы затрачиваемых ресурсов при реализации соответствующего эффективного технологического способа. Таким образом, приведенное соотношение описывает границу технологического множества V ,поскольку при данном векторе затрат ( x 1 , ..., x N ) производить продукции, в количестве большем, чем y , невозможно, а производство продукции в количестве меньшем, чем указанное, соответствует неэффективному технологическому способу. Выражение для производственной функции оказывается возможным использовать для оценки эффективности принятого на данном предприятии методе хозяйствования. В самом деле, для заданного наб