Сучасні квантові криптографічні лінії зв’язку
Информация - Компьютеры, программирование
Другие материалы по предмету Компьютеры, программирование
ртний оптоволоконний кабель.
Ці експерименти показали, що зміни поляризації, внесені оптичним волокном, нестабільними. Причому поляризація може різко змінюватися, хоча і може мати короткі періоди стабільності (порядку декількох хвилин). Це означає, що квантова криптографічна система вимагає створення механізму стабілізації або активної компенсації таких змін. Такі механізми стабілізації й способи автоматичного контролю поляризації існують, але вони є малоефективними і поки не використовуються. Відмічено також, що використання замість стандартного ОВ волокна зі збереженням поляризації не вирішує проблему, хоча і дозволяє збільшувати довжину ділянки з контрольованою поляризацією.
3. Волоконно-оптичні системи передавання з фазовим кодуванням
Поняття фази оптичного випромінювання (завдяки корпускулярно-хвильовому дуалізму) справедливе не тільки для світлового променя (тобто хвилі в класичній оптиці), але і для одиночних фотонів (тобто часток, у квантовій оптиці), поведінка яких (розщеплення, додавання й інтерференція) інтерпретується, однак, як хвильова.
Рисунок 4 Схема квантової криптосистеми з двома інтерферометрами Маха-Цендера
Для цих цілей може бути використаний інтерферометр Маха-Цендера разом з однофотонним джерелом випромінювання і детекторами фотонів. Блок на стороні абонента тоді буде містити джерело, розгалуджувач і фазовий модулятор РМ?А, а блок на стороні абонента буде змінюватися з фазового модулятора РМ?В, розгалуджувача й детекторів APD, імовірність реєстрації фотона на одному з виходів яких ("0" або "1") буде мінятися зі зміною фази. На рис. 4 показана схема криптосистеми з використанням двох ОВ-интерферометрів Маха-Цендера (А и В), зєднаних ОВ-кабелем.
Як видно з рисунка, передавач А посилає потік одиночних фотонів довжиною хвилі 1550 нм у вигляді сильно ослаблених лазерних імпульсів (формуючи так звану ланку слабкої когерентності). Кожен із цих фотонів проходить через інтерферометр Маха-Цендера, що випадково модулюється за допомогою РМ?А, встановлюючись на одну із чотирьох фаз (варіант, що відповідає використанню протоколу BB84), що діє на інтервалі проходження імпульсу. Тим самим модулюється "фаза" хвильового образу фотона, обрана на основі використованого базису ("+","") і значення ("0","1"), важливих прі самоінтерференції на виході інтерферометра.
Приймач на стороні Б містить інший схожий інтерферометр, який випадково моделюється за допомогою РМ?В для встановлення однієї із двох фаз, необхідної для встановлення потрібного базису. Фотон, пройшовши інтерферометр Б, відновлює, інтерферуючи на вихідному розгалуджувачі, свій стан, потрапляючи на один з детекторів ("0" або "1") APD. Для синхронізації роботи детекторів А посилає (використовуючи WDM-мультиплексор) у те ж волокно потужні імпульси з довжиною хвилі 1300 нм для синхронізації й стробування діодів APD.
На рис. 4 показано механізм проходження фотонів від джерел з А до детекторів APD у Б (без урахування факту використання модуляції). На рис. 4 а показані незбалансовані інтерферометри Маха-Цендера, плечі яких різні: нижні (короткі) мають довжину SA і SB, а верхні (довгі) - довжину LA і LB. Це значить, що плечі мають різну часову затримку на поширення хвильового імпульсу. Фотон, розглянутий як хвиля, розщеплюється на два однакових промені першим розгалуджувачем (50/50) в абонента. Нижній проходить шлях SA, а верхній - LA до вихідного розгалуджувача, де промені поєднуються, створюючи дипульс LASВ, що, пройшовши квантовий ОВ-канал, доходить до вхідного розгалуджувача (50/50) інтерферометра Б. Потім він знову розщеплюється на два однакових промені. Нижній проходить шлях SB, а верхній - LB до вихідного розгалуджувача Боба, де вони утворюють два дипульса: нижній LASВ /SASB і верхній - LALВ / SALВ. Обєднання їх показано на рис. 4 б. Воно призводить (за умови ідентичності/налаштування обох інтерферометрів) до формування хвилі із трьома піками: більшим центральним (SALB+ LASВ) і двома бічними (LALB і SASB).
Для опису дії модуляції в даній системі згадаємо закони відбиття/преломлення:
- фаза променя, відбитого від границі розділу двох середовищ (з показником заломлення n1 і n2), зрушується на ?/2, якщо n2 > n1 і не змінюється, якщо n2 < n1;
- фаза променя, заломленого на границі розділу двох середовищ (якщо промінь існує), не змінюється.
На рис. 5 показано, що центральний пік у фотонному імпульсі містить інтервал когерентності (рис. 5 а), всередині якого одночасно присутні хвильові образи двох різних шляхів: SALB і LASB, фази яких, у загальному випадку, зрушені відносно один одного на деяку величину ?. Ці два хвильових образи взаємодіють (інтерферують) при обєднанні на виході інтерферометра в точці розгалуження в В (на рис. 6в показана границя розділу середовищ у цій точці).
Рисунок 5 Механізм вибору 0 та 1 за допомогою APD і інтерферометра на боці Б.
Застосовуючи закони відбиття/заломлення і припускаючи, що нижче цієї границі роздягнуло середовище більше щільне, одержимо, що відбиті верхні й заломлена нижня хвилі виявляться у противофазі й знищують один одну (це називають іноді деструктивною інтерференцією), що фіксується за допомогою APD як "0" (тобто фотон не фіксується), а відбита нижня й преломлена верхн