Сучасні квантові криптографічні лінії зв’язку

Информация - Компьютеры, программирование

Другие материалы по предмету Компьютеры, программирование

?я шифрації/дешифрації і як співвідносяться між собою відкриті й секретні ключі.

Ці два ключі мають бути звязані між собою якоюсь "однобічною" функцією, що дозволила б легко обчислити відкритий ключ, використовуючи секретний, але не дозволяла б зробити зворотну процедуру. Цей принцип був запропонований в 1976 році, але тільки в 1978 році Р.Райвесту, А.Шамиру й Л.Эдльману вдалося знайти таку функцію, що була застосована в алгоритмі RSA (Rivest, Shamir, Adleman). Алгоритм RSA вважається досить захищеним для багатьох застосувань сучасної криптографії. Зараз більшість банківських транзакцій, системи електронної купівлі, комерційні й некомерційні системи криптографічного захисту використовують принципи RSA.

Криптосистеми з відкритим ключем, здавалося б, подолали основний недолік симетричних криптосистем необхідність в обміні секретними ключами. Однак ніхто ще не довів повну захищеність алгоритму RSA. В 1985 році Дэвид Дойч описав принцип квантового компютера, який буде мати обчислювальну потужність, що набагато переважатиме всі нинішні й майбутні компютерні системи. В 1994 році Пітер Шор описав алгоритм, за допомогою якого такий компютер зможе легко зламати шифр RSA, хоча і не зміг продемонструвати його роботу, оскільки на той момент квантових компютерів не існувало.

Незважаючи на те, що сьогодні ніхто не знає, як сконструювати квантовий компютер, одночасно ніхто не може довести, що його побудова неможлива або що він вже не побудований у якійсь секретній лабораторії. Це означає, що немає абсолютної впевненості в достатньому ступені захищеності систем з відкритим ключем.

Ми зосередимося тільки на проблемах розподілу/передачі секретних ключів у симетричних криптосистемах, з огляду на те, що вони можуть бути успішно вирішені вже сьогодні.

Розрізняють два типи секретних ключів для симетричних систем: довгострокові, що використовуються багаторазово та продовж тривалого часу, і короткочасні (сеансові), що використовуються на один сеанс або не більше одного дня. Для передачі або розподілу таких ключів між користувачами існує кілька рішень:

фізичний розподіл передача довгострокового ключа за допомогою курєра;

розподіл за допомогою протоколів із секретним ключем передача сеансових ключів користувачам у режимі реального часу за допомогою центра довіри, що користується спеціальними протоколами обміну ключів;

розподіл за допомогою протоколів з відкритим ключем передача сеансових ключів користувачам у режимі реального часу за допомогою центра довіри, що використовує криптосистеми з відкритим ключем (найпоширеніше застосування техніки шифрування з відкритим ключем);

квантовий розподіл ключів передача квантових ключів з використанням квантових властивостей часток (фотонів) у відповідності з процедурами квантової криптографії.

Перші три способи передачі секретних ключів є традиційними й добре відомими, тому зупинимося на останньому способі, що має найбільшу перспективу.

Однак для цього потрібно коротко описати квантові криптосистеми, щоб розуміти особливості їхньої роботи й можливості рішення поставленого завдання.

Першим поштовхом у розвитку квантової криптографії була ідея випуску "квантових грошей", запропонована С.Візнером (Wiesner) у 1970 році. Вона була, по суті, відкинута, але пізніше зявилася у 1983 році. Ідея полягала в розміщенні всередині купюри декількох фотонів, поляризованих у двох сполучених ортогональних станах поляризації. Відповідно до принципу невизначеності Гейзенберга, існують сполучені квантові стани, які не можуть бути вимірювані одночасно. З квантової механіці добре відомо, що існує неізначенность енергії та часу:

 

. (1)

 

Взяв на увагу, що находимо:

 

. (2)

 

У останньому співвідношенні ? інтервал частот монохроматичних хвиль складаючих цуг, t ? час випромінювання кванту світла, тобто інтервал часу відповідаючий довжині хвильового цуга. Під інтервалом когерентності розуміють довжину хвильового цуга, тобто відстань між Х2 и Х1 рис. 1.

 

Рисунок 1 Хвильовий цуг

 

Фальшивомонетникові, щоб підробити купюру, потрібно вимірювати стани усіх фотонів у ній, а потім відтворити їх у фальшивій купюрі. Однак він не може цього зробити (відповідно до принципу невизначеності), з одного боку, і не може одержати цю інформацію від банку, що зберігає інформацію, яка залежить від номера банкноти,

Основними принципами квантової механіки, покладеними в основу квантової криптографії, є:

  1. неможливість розрізнити абсолютно надійно два неортогональні квантові стани;
  2. заборона на клонування. Завдяки унітарності й лінійності квантової механіки неможливо створити точну копію невідомого квантового стану без впливу на вихідний стан. Таким чином, факт "прослуховування" квантового каналу вже призводить до помилок передачі, виявлення яких доступне легальним користувачам.
  3. Наявність переплутаних і заплутаних квантових станів. Дві квантово-механічні системи можуть перебувати у стані взаємної кореляції, наприклад завдяки явищу двофотонної кореляції при інтерференції. Це призводить до того, що вимір обраної величини в одній з систем впливає на результат виміру цієї ж величини в іншій системі. Такий ефект може бути пояснений виникненням переплутаних квантових станів. Це означає, що вимірюване, проведене на одній із двох систем, може дати з рівної ймовірністю |0> або |1>, тоді як стан іншої системи буде протилежним (тобто |1&