Суммирование расходящихся рядов

Курсовой проект - Математика и статистика

Другие курсовые по предмету Математика и статистика

µменно

 

 

Современный анализ ставит вопрос по-другому. В основу кладется то или иное точно сформулированное определение “обобщенной суммы" ряда, не придуманное только для конкретно интересующего нас числового ряда, но приложимое к целому ряду классов таких рядов. Определение “обобщенной суммы" обычно подчиняется двум требованиям.

Во-первых, если ряду приписывается “обобщенная сумма" А, а ряду - “обобщенная сумма" В, то ряд , где p, q - две произвольные постоянные, то должен иметь в качестве “обобщенной суммы" число . Метод суммирования, удовлетворяющий этому требованию, называется линейным.

Во-вторых, новое определение должно содержать обычное определение как частный случай. Точнее говоря, ряд, сходящийся в обычном смысле к сумме А, должен иметь “обобщенную сумму", и притом также равную А. Метод суммирования, обладающий этим свойством, называют регулярным. Разумеется, интерес представляют лишь такие регулярные методы, которые позволяют устанавливать “сумму” в более широком классе случаев, нежели обычный метод суммирования: лишь тогда с полным правом можно говорить об “обобщенном суммировании”. Мы переходим к теперь непосредственно к рассмотрению особо важных с точки зрения приложений методов обобщенного суммирования".

Глава 2. Метод степенных рядов

 

2.1 Суть метода

 

Этот метод, в существенном принадлежит Пуассону, который сделал первую попытку применить его к тригонометрическим рядам. Он состоит в следующем.

По данному числовому ряду (А) строится степенной ряд

 

(1)

 

Если этот ряд для сходится и его сумма при имеет предел А:

 

,

 

то число А и называют “обобщённой (в смысле Пуассона) суммой” данного ряда. Примеры.1) Ряд, рассмотренный Эйлером:

Здесь уже в силу самого определения приводит к степенному ряду, сумма которого при стремится к пределу . Значит, число , действительно, является “обобщенной суммой” указанного в точном установленном здесь смысле.

2) Возьмем более общий пример: тригонометрический ряд

 

(2)

является расходящимся при всех значениях

Действительно, если имеет вид , где и - натуральные числа, то для значений , кратных , будет , так что нарушено необходимое условие сходимости ряда. Если же отношение иррационально, то, разлагая его в бесконечную непрерывную дробь и составляя подходящие дроби , будем иметь, как известно,

 

откуда

 

Таким образом, для бесконечного множества значений

 

, так что .

 

Это также свидетельствует о нарушении необходимого условия сходимости. Если образовать степенной ряд:

 

 

(здесь буква заменяет прежнюю букву ), то его сумма при значении , отличном от 0, будет

 

(3)

и при стремится к 0. Таким образом, для “обобщенной суммой” ряда будет 0. если , то ряд (2), очевидно имеет сумму, равную ; впрочем, выражение (3), которое в этом случае сводится к , также имеет пределом .

3) Аналогично ряд

 

,

 

который сходится лишь при или , приводит к степенному ряду

 

.

 

Так что “обобщенная сумма" на этот раз оказывается равной при и равной нулю при .

Непосредственно ясно, что рассматриваемый метод “обобщенного суммирования” является линейным. Что же касается регулярности этого метода, то она устанавливается следующей теоремой принадлежащей Абелю.

 

2.2 Теорема Абеля

 

Теорема. Если ряд (А) сходится и имеет сумму А (в обычном смысле), то для сходится степенной ряд (1), и его сумма стремится к пределу А, когда .

Доказательство. Начнем с того, что радиус сходимости ряда (1) не меньше 1, так что для ряд (1), действительно, сходится. Мы имели уже тождество

 

 

(где ); вычтем его почленно из тождества

 

.

 

Полагая , Придем к тождеству

 

(4)

 

Так как то по произвольно заданному найдется такой номер , что , лишь только .

Разобьем сумму ряда в правой части (4) на две суммы

 

 

Вторая оценивается сразу и независимо от :

 

 

Что же касается первой, то она стремится к 0 при и при достаточной близости к 1 будет

 

 

так что окончательно что и доказывает утверждение.

Если ряд (А) суммируем по Пуассону-Абелю к сумме А, то в обычном смысле, как мы видели, он может и не иметь суммы. Иными словами из существования предела

 

, (5)

 

вообще говоря, не вытекает сходимость ряда (А). Естественно возникает вопрос, какие дополнительные условия надлежит наложить на поведение членов этого ряда, чтобы из (5) можно было заключить о сходимости ряда (), т.е. о существовании для него суммы в обычном смысле. Первая теорема в этом направлении была доказана Таубером.

 

2.3 Теорема Таубера

 

Теорема. Пусть ряд (1) сходится при 0<x<1, и имеет место предельное равенство (5). Если члены ряда (А) таковы, что

(6)

то и

 

Доказательство. Разобьем доказательство на две части. Сначала

предположим, что Если положить то при величина , монотонно убывая, стремится к нулю.

Имеем при любом натуральном N

 

 

так что:

 

 

Взяв произвольно малое число , положим

 

Так что при . Пусть теперь выбрано достаточно большим чтобы: выполняло?/p>