Станки с числовым программным управлением

Курсовой проект - Разное

Другие курсовые по предмету Разное

а имеет место тормозной спуск, что приводит к изменению направления вращения якоря двигателя и соответственно знака ЕДС. Из первого уравнения системы (1.1) следует, что в этом случае ток якоря определяется как

 

I=(U+E)/R,

 

т.е. ток якоря превышает значения токов короткого замыкания.

 

Рисунок 1.7 - Схема включения ДПТ в режиме динамического торможения.

 

На рис. 1.8 представлены механические характеристики режима динамического торможения.

 

Рисунок 1.8 - Характеристики динамического торможения ДПТ с НВ.

 

Поэтому для реализации этого режима необходимо ограничивать ток якоря введением добавочного сопротивления Rд. Графически механические и электромеханические характеристики в этом случае являются продолжением соответствующих характеристик в 4 квадрант (рис. 1.9).

Если у ДПТ, работающего в двигательном режиме изменить полярность напряжения на обмотке якоря на противоположную, то знак тока якоря I изменится на противоположный в соответствии с выражением I=-(U+E)/R . Двигатель переходит в тормозной режим, и его механическая характеристика изображается во 2 квадранте. При этом происходит интенсивное торможение и скорость вращения двигателя падает до нуля. Если в этот момент времени обмотку якоря не отключить от сети, то направление вращения изменится на противоположное, т.е. двигатель реверсируется. С энергетической точки зрения данный способ не экономичен, т.к. большое количество энергии выделяется на добавочном сопротивлении, которое необходимо включать в якорную цепь для ограничения бросков тормозного тока. Механические характеристики для этого режима торможения представлены на рис. 1.10.

 

Рисунок 1.9 - Характеристики ДЛТ с НВ в режиме тормозного спуска.

 

Режим тормозного спуска широко применяется в грузоподъемных механизмах для опускания грузов.

 

Рисунок 1.10 - Характеристики ДПТ с НВ в режиме торможения противовключением при изменении полярности питающего напряжения (R3>R2>R1).

 

Переходные процессы. Неустановившиеся или переходные процессы, имеющие место при переходе привода из одного установившегося состояния в другое, совершающемся во времени. При этом

 

(1.12)

 

Можно назвать следующие причины возникновения переходных процессов:

Изменение момента сопротивления Мс;

изменение момента на алу двигателя М, то есть переход привода с одной характеристики на другую, имеющий место при пуске, торможении, реверсе, регулировании скорости, изменении какого-либо параметра привода.

Необходимость в изучении переходных процессов возникает в связи с тем, что производительность ряда ответственных механизмов (например, реверсивного прокатного стана) определяется быстротой протекания переходных процессов; качество выполнения многих технологических операций определяется переходными процессами (движение лифта, врезание резца в деталь и т.п.); механические и электрические перегрузки оборудования в большинстве случаев определяются переходными процессами. Основная задача при изучении переходных процессов сводится к определению зависимостей w(t), M(t) и i(t) для любых конкретных приводов в любых условиях.

Мгновенный наброс и сброс нагрузки, пуск, реверс, торможение - вот круг задач которые приходится решать при исследовании переходных режимов. При этом основным фактором, влияющим на переходной процесс, является механический момент инерции (J). Такие электрические параметры, как индуктивность обмоток якоря, индуктивность обмоток возбуждения и т. п., оказывают ничтожно малое влияние на работу электродвигателя в переходных режимах, поэтому при исследовании переходных процессов ими обычно пренебрегают. Фактор, вызывающий переходный процесс, изменяется скачкообразно (мгновенно) то есть много быстрее, чем скорость.

Все переходные процессы подчиняются, очевидно, механическому уравнению движения

 

(1.13)

 

Искомые зависимости w(t) и M(t) должны быть получены путем решения этого уравнения при заданных начальных условиях. Конкретные особенности привода отразятся в виде зависимостей M(w) и Mс (w) входящих в уравнение.

Рассмотрим поведение привода при следующих условиях:

1.M = const, Mс = const

 

а) б)

Рисунок 1.11 - Механические характеристики (а) и временные зависимости (б) при М = const и Mc = const

 

Пусть привод работал в точке wнач, Мнач = Мс (рис. 1.11) некоторой характеристики (она нас не интересует) и в момент времени t = 0 был мгновенном переведен на новую характеристику, показанную на рис. 1.11, а жирной линией.

Уравнение движения привода в переходных режимах (1.13) в этом случае представляет собой дифференциальное уравнение с разделяющимися переменными и его решение имеет вид:

 

(1.14)

 

Постоянную интегрирования С найдем из начального условия - при t =

 

, w = wнач: wнач = С.

 

Окончательно будем иметь:

 

(1.15)

Это решение действует на интервале wнач < w < wкон, так как по условию при w = wкон функция w(М) терпит излом. На этом интервале М =М1.

Графики переходного процесса приведены на рис. 1.11,б. При этом время переходного процесса tпп:

 

(1.16)

 

Рассмотренный простейший случай имеет очень большое практическое значение, так как к нему может быть сведено в целях оценки времени и характера переходного процесса большое число конкретных задач.

2.Мс = const, M линейно зависит от w, b < 0.

Пусть характеристики двигателя и механизма и?/p>