Способы определения современной стоимости денег и наращенной суммы вложений
Статья - Разное
Другие статьи по предмету Разное
?ода, при условии, что современные ценности потоков платежей в обоих контрактах будут одинаковыми, эквивалентными, т.е.:
S(1)1 + S(1)2 = S(2)1 + S(2)2
где S(1)1 и S(1)2 дисконтированные (приведенные) суммы в первом контракте;
S(2)1 + S(2)2 дисконтированные (приведенные) суммы платежей во втором контракте.
В качестве наращенной суммы (I) принимается сумма обязательства вернуть долг, включая проценты. Тогда приведенная к настоящему моменту сумма обязательного платежа составит:
S(1)1 = 12000 руб. / (1 + 0,3 * 2) = 7500 руб.;
S(1)2 = 8000 руб. / (1 + 0,3 * 5) = 3200 руб.;
S(2)1 = 7000 руб. / (1 + 0,3 * 1) = 5384,6 руб.;
S(2)2 = X руб. / (1 + 0,3 * 3) = X руб. / 1,9.
Контракты будут эквивалентны, если будет выполнено равенство:
7500 руб. + 3200 руб. = 5384,6 руб. + X руб. / 1,9.
Отсюда X руб. = (7500 + 3200 - 5384,6) * 1,9 = 10099,3 руб.
Из примера видно, что сокращение срока платежа во втором контракте, позволяет уменьшить суммарные выплаты. По первому контракту они составят 20000 руб. (12000 + 8000), а по второму 17099,3 руб. (7000 + 10099,3).
На практике финансовые операции обычно совершаются с использованием сложных процентов. Кредитные взаимоотношения, осуществление долгосрочных финансово-кредитных операций, оценка инвестиционных проектов нередко требуют применения математических моделей непрерывного начисления процентов, их реинвестирования, использования сложных процентов. Особенность процесса при этом состоит в том, что исходная базовая сумма увеличивается с каждым периодом начисления, в то время как при использовании простых процентов она остается неизменной. Наращение по сложным процентам осуществляется с ускорением. Процесс присоединения начисленных процентов к базовой сумме носит название капитализации процентов.
Наращение по сложным процентам описывается геометрической прогрессией. Множитель наращения будет выглядеть как (1 + i)t. Наращенная сумма исчисляется по алгоритму:
St = S0 * (1 + i)t
где S0 базовая сумма (современная стоимость суммы денег); St будущее значение суммы денег; i годовая процентная ставка; t срок, по истечении которого современное значение денег изменится.
Предположим, что банк ежегодно начисляет сложные проценты (30%) на вклад в сумме 100000 руб. Тогда наращенная сумма через два года составит
St = 100000 руб. * (1 + 0,3)2 = 169000 руб. Через четыре года она будет равна St = 100000 руб. * (1 + 0,3)4 = 285610 руб.
Ставка сложных процентов обычно указывается на год (номинальная), хотя начисляться они могут чаще каждое полугодие, квартал, месяц, даже день. Тогда за каждый период годаставка сложных процентов будет равна i/m где т число раз начисления процентов в году.
В этом случае алгоритмы расчета наращенной суммы выглядят так:
St = S0 / (1 + i/m)tm
Дополним условия предыдущего примера тем, что та же годовая ставка сложных процентов (30%) применяется четыре раза в году, т.е. число начислений возрастает. Тогда наращенная сумма, например, за два года составит
St= 100000 руб. * (1 + 0,3/4)2*4 = 100000 руб. * (1 + 0,075)8 = 100000 руб. * 1,78348 = 178,348 тыс.руб.
При начислении один раз в год наращенная сумма за два года, как мы видели, составила лишь 169000 руб.
При увеличении числа периодов начисления сложных процентов при одной и той же годовой ставке за одно и то же время наращения сумма будет возрастать.
В финансовых расчетах с использованием сложных процентов принято определять эффективную ставку, т.е. такую годовую номинальную ставку сложных процентов, которая дает возможность получить тот же результат, как и при начислении процентов несколько раз в году. Равенство наращенных сумм обеспечивается здесь равенством первоначальных сумм, периодов и множителей наращения.
Эффективная процентная ставка будет больше номинальной. Это видно из соответствующих алгоритмов, где iэф эффективная ставка. Множители наращения должны быть равны
(1 + iэф)t = (1+im/m)mt
Отсюда эффективная ставка составит
iэф = (1+ im/m)mt - 1
Используя приведенный алгоритм, рассчитаем эффективную ставку сложных процентов при ежеквартальном начислении, если номинальная ставка 20%, а период равен году. Первоначальная сумма 300 тыс. руб.
iэф = (1+0,2/4)4 - 1 = 0,2155 = 21,55%
Наращенная сумма при этом составит
St = S0 * (1 + iэф)t = 300 тыс. руб. * (1 + 0,2155) = 364,65 тыс. руб.
При начислении сложных процентов четыре раза в году получим ту же наращенную сумму:
St = S0 / (1+ im/m)tm = 300 тыс.руб. / (1+ 0,2/4)4 = 300 * (1,5)4 = 364,65 тыс.руб.
В финансовых расчетах должна учитываться инфляция, тем более если она значительна. С одной стороны, сумма, положенная, например, на депозит, получит приращение, а с другой утратит свою реальную стоимость в результате инфляции. Для определения наращенной суммы с учетом инфляции используют алгоритм
Sинф = S0 * (1 + im/m)t / (1 + h)t
где Sинф наращенная сумма с учетом инфляции; S0 базовая сумма; im годовая номинальная банковская ставка, применяемая m разв году; h ожидаемый месячный темп инфляции; t число месяцев.
Пример. Предположим, что на депозит положена сумма 800 тыс. руб. (S0). Номинальная годовая банковская ставка (im) равна 48%. Сложные проценты начисляются каждый месяц, т.е. годовая номинальная ставка применяется 12 раз в году (m). Ожидаемый месячный темп инфляции (h) равен 10%. Определим наращенную сумму (с учетом инфляции) через четыре месяца, а также эрозию капитала (ЭК), или уменьшение реальной стоимости суммы, положенной на депозит (Sинф - S0):
Sинф = 800 тыс.руб. * (1 + 0,48 / 12)4 / (1+0,1)4 = 639,2 тыс.руб.
Эрозия капитала составит: 639,2 тыс. руб. - 800 тыс. руб. = -160,8 тыс. руб.
Чаще всего финансовые операции имеют продолжительный характер, состоят не из одного разового платежа, а из потоков платежей и нередко с разными знакам