Способы и методы повышения несущей способности ледяного покрова
Дипломная работа - Физика
Другие дипломы по предмету Физика
ет проходить подошва ИГВ созданная движущийся нагрузкой, то пластина повернется на угол по часовой стрелке что приведет к возникновению подъемной силы[50], направленной в противоположную сторону, т.е. в верх и наоборот, что будет уменьшать амплитуду ИГВ [50], т.е. уровень изгибных напряжений, что увеличит несущею способность ледяного покрова [Патент РФ № 2171333].
Где может использоваться: При создании ледяной переправы предназначенной для движения транспорта и транспортировки грузов на мелководных акваториях с подледным течением в районах Земли в зимний период времени с температурой ниже 00С.
Выводы:
Обобщая результаты экспериментальных исследований изложенных в Главе I, мы можем сделать следующие общие выводы:
- Ледяной покров в целом, как естественная конструкция, несущая нагрузку, может при одних условиях воздействия нагрузки рассматриваться как упругое тело, при других условиях - как пластичный материал.
- При кратковременном действии неподвижной нагрузки и при
подвижной нагрузке ледяной покров ведет себя как упругое тело. - Прогибы льда под нагрузкой зависят от веса нагрузки при некоторой постоянной толщине льда и при определенных свойствах
(структура, модуль упругости) ледяного покрова. - Рассмотрение удара груза о ледяной покров представляет
практический интерес как при изучении момента посадки самолета на
лед, когда может иметь место явление удара о поверхность льда, так и
при исследовании ударов быстро движущегося груза о неровности поверхности ледяного покрова и в других аналогичных случаях. При ударе груза о лед величина деформаций в момент удара очень мала, однако
скорость деформации весьма значительна, так что в результате может
наступить хрупкое разрушение льда. Поэтому в случае ударного действия нагрузки на лед следует опасаться разрушения ледяного покрова,
несмотря на отсутствие больших деформаций прогиба. Наступление
хрупкого излома льда, естественно, ведет к немедленному погружению
расколовшейся части льда вместе с грузом в воду. Хрупкое разрушение
ледяного покрова может происходить не только под влиянием чисто
ударной нагрузки.
Иногда оно наблюдается и при движущихся по льду грузах, являясь причиной весьма неожиданных аварий и провалов грузов под лед, несмотря на достаточную, с точки зрения расчета на статический изгиб, толщину льда.
5. Основным фактором, определяющим появление упругой или пластической деформации в ледяном покрове, является длительность действия нагрузки в данной точке. Поэтому целесообразно различать следующие основные режимы нагрузки:
-неподвижную весьма длительного действия нагрузку на лед, характеризующуюся появлению прогибов от пластической деформации;
-неподвижную кратковременную нагрузку на льду, при которой деформацию льда можно считать упругой;
-медленное движение грузов, характеризующееся тем, что кривая изгиба ледяного покрова близка к форме кривой изгиба от статической нагрузки, но с уменьшенными ординатами прогиба;
-быстрое движение грузов при скоростях меньше скорости свободных длинных волн, характеризующееся тем, что выявляется роль свободных волновых колебаний жидкости под ледяным покровом и кривая деформации ледяного покрова имеет видоизмененную форму (с характерной для этого случая движения волной вспучивания; впереди чаши прогиба);
Опыты показывают, что при относительно небольшой скорости перемещения груза наблюдается уменьшение ординат кривой прогибов под грузом, при сохранении общей формы кривой деформации. По мере увеличения скорости движения груза на форме кривой изгиба ледяного покрова сказывается влияние волновых движений воды под ледяным покровом.
С увеличением скорости движения возрастают величины прогибов и действующих в ледяном покрове напряжений. Согласно опытным данным максимальные прогибы в ледяном покрове наблюдаются при скорости движения нагрузки, равно скорости распространения свободных длинных волн, определяемой для мелких водоемов формулой Лагранжа: , где H- глубина водоема.
Когда скорости движения нагрузки меньше скорости распространения плоских длинных волн, вызываемые нагрузкой прогибы (а следовательно, и напряжения в ледяном покрове), убывают по мере удаления от центра давления (или приблизительно от места приложения нагрузки, поскольку центр давления не совпадает с равнодействующей приложенной нагрузки). При этом деформация ледяного покрова имеет характер местного возмущения и в общих чертах (в смысле упругой поверхности) остается почти такой же, как и при неподвижной нагрузке.
В условиях северных регионах нашей страны, а также там, где зимняя температура ниже 0 0С не достаточно применять стандартные методы для увеличения несущей способности ледяного покрова (очистка от снега, полив водой, настил бревен и т.п.), с связи с выше установленными закономерностями.
Поэтому для более эффективного увеличения прироста толщины льда или уменьшения ИГВ возбуждаемых движущийся нагрузкой целесообразно применять следующие способы :
-Уменьшение температурного градиента по толщине льда приведет к увеличению последней, что приведет к увеличению цилиндрической жесткости ледяного покрова и соответственно к повышению несущей способности переправы.
-Применение свай, для создания жестких ледяных опор упирающихся в дно бассейна акватория и подпирающие ледяной покров снизу своей верхней частью, позвол