Способы и методы повышения несущей способности ледяного покрова

Дипломная работа - Физика

Другие дипломы по предмету Физика

это с тем, что процессы деформирования льда часто сопровождаются фазовыми переходами.

Известно, что даже наиболее чистые формы пресноводного льда содержат примеси в виде твердых частиц, растворимых веществ и газов. Эти примеси в значительной степени влияют па процесс образования зародышей и движение дислокаций, определяя прочность ледяного покрова. Именно движение дислокаций решительным образом меняет свойства кристаллических тел и объясняет, почему прочность реальных кристаллов в сотни и тысячи раз меньше теоретической.

Кристаллическое строение льда зависит от многих причин, в том числе от истории ледообразования. У пресного льда кристаллы имеют больший размер, чем у морского. Это влияет на деформацию и прочность речного льда.

Эксперименты показали, что при одном и том же напряжении сдвига скорости деформаций поликристаллического льда много меньше, чем в кристалле. Это связано с хаотичной ориентировкой плоскостей скольжения, затрудняющей сдвиги. Именно разная форма и размеры зерен, и хаотическое их расположение в поликристаллическом льду не позволяют проявиться индивидуальным особенностям кристаллов. При оценке механических свойств структура материала не так важна, важнее некоторые макроскопические свойства - прочность, вязкость, модуль упругости и т. д.

Хаотическое расположение зерен в поликристаллическом льду позволяет с достаточной для практики точностью рассматривать ледяной покров как тело изотропное и однородное. Лишь по толщине льда необходимо учитывать анизотропию, связанную с температурными градиентами и историей ледообразования.

В дальнейшем будем полагать, что размеры образцов льда велики по сравнению с размерами зерен и кристаллов, входящих в этот образец.

Оценка прочности ледяного покрова в значительной степени зависит от объективной оценки его физико-механических характеристик, определяемых при испытаниях по соответствующим методикам в лабораторных или полевых условиях.

Как правило, получаемые результаты испытаний значительно расходятся между собой, что объясняется как разными условиями их проведения, так и тем, что многочисленные и важные факторы (размеры образцов, температура льда, объем полостей воздуха в нем, история ледообразования и т. д.) часто при этом не учитываются.

Для возможности сопоставления механических свойств при испытаниях необходимо соблюдать подобие геометрическое, технологическое, механическое, физическое и энергетическое.

Приведем лишь основные физико-механические свойства для пресноводного льда, в том объеме, который необходим для дальнейшего изложения.

Предполагается, что при температурах от -3С и ниже, и при кратковременных воздействиях лед ведет себя как вполне упругое тело, подчиняющееся закону Гука. Пластическая деформация при этом не успевает развиться.

При определении модуля упругости льда используют статический и динамический способы. Статический способ позволяет получить при статическом нагружении образцов так называемый модуль деформации, который всегда меньше динамического:

ЕСT= (5,69 - 0,648 T)*103МПа; Eд=(8 + 9,8)*103МПа,

где Т - абсолютная температура воздуха.

- Коэффициент Пуассона ?=0,31-0,36.

- Модуль сдвига G=(3,0-3,8)*103MПa.

Значение прочности льда на сжатие в зависимости от температуры приведены ниже [14]:

 

Т, 0C0 -5-5-1010-15-15-20?cж, МПа…1.63.03.03.63.63.93.04.0Прочность при растяжении:

Т, 0C0-10-10-20-20-35?p, МПа...0.91.21.21.51.41.8

Прочность льда на изгиб оценивают в ходе разрушения образцов льда при изгибе по измерениям приложенного усилия и размеров этих образцов. Считается, что наиболее надежные результаты дают испытания клавиш на плаву, вырезанных из ледяного покрова ?u=0.47-0.71 MПа.

 

Прочность на изгиб существенно зависит от скорости деформации. Представляется обоснованной зависимость прочности льда на изгиб, предложенная В. В. Лавровым [34] и показанная на рисунке 2. Прочность льда при растяжении и сжатии различна, поэтому нейтральная ось смещается при изгибе и часто характер распределения напряжений

по толщине пластины становится нелинейным. Прочность льда на срез при отрицательных температурах воздуха ?ср=0.6-1,1МПа.

В последнее время развитие получили исследования в области механики роста трещин в различных материалах, несколько опытов было проведено во льду [35,36]. Известно, что основной характеристикой роста трещин является коэффициент вязкости разрушения в вершине трещины отрыва К1С. Так, в работе [36] значения К1С поликристаллического льда, полученные экспериментально, равны 0,300,15 МПа *м1/2 (при температуре от -2 до -14 С). Экспериментальные измерения К1С проведены также Гудменом при температурах -4, -11 и -24С. Средние значения К1С оказались соответственно равными 0,118; 0,119; 0,108 МПа*м1/2 .

В [36] отмечается, что коэффициент вязкости разрушения практически не зависит от скорости нагружения и температуры.

Коэффициенты трения натурного льда о корпус судна изменяются в широких пределах. Например, динамический коэффициент трения меняется в пределах 0,020,20, а статический коэффициент в пределах 0,041,0 [22]. Плотность льда рл колеблется в пределах от 890 до 920 кг/м. Теплопроводность пресного льда ?= 2,22Вт/м*К.

Температуропроводность a=?/cp*?л где - cp удельная теплоемкость льда при постоянном давлении, например, а= 4,76*107 м2/с при T=-5оС.

Удельная теплота плавления L пресноводного льда при разной температуре воздуха р