Способы записи информации на винчестер, головки чтения-записи

Курсовой проект - Компьютеры, программирование

Другие курсовые по предмету Компьютеры, программирование

анные с большей плотностью за счет увеличения коэрцитивной силы. Технология MIG позволяет увеличить магнитную индукцию в зазоре между головкой и диском. MIG-головки формируют на поверхности диска намагниченные участки с более выраженными границами намагниченных зон, что позволяет использовать более тонкий магнитный слой. Сердечник MIG-головок имеет значительно меньшие размеры, по сравнению с сердечниками ферритовых головок, что приводит к уменьшению их массы, а, следовательно, и к уменьшению зазора между головкой и поверхностью диска.

Существовала также разновидность MIG-головок с напылением магнитного сплава и в рабочий зазор - так называемые, двухслойные MIG-головки. Такой подход позволял улучшить характеристики головок.

Так как MIG-головки, являются разновидностью ферритовых головок, то они являются универсальными головками чтения-записи.

Конструкция MIG-головок позволяла производить дисковые накопители с емкостью от 50 до 100 Мбайт.

Тонкопленочные (TF):

Первые тонкопленочные (Think Film - TF) головки получили практическое применение в 1979 году, хотя их конструкция разрабатывалась с 1960 года. В литературе можно встретить еще и такое название этих головок, как тонкопленочные индуктивные головки - Thin Film Inductive (TFI). Производились тонкопленочные головки путем фотолитографии, т.е. так же как и интегральные микросхемы. Данная технология производства позволяет резко уменьшить размер и массу головок.

Сердечник тонкопленочной головки получается следующим образом. На подложку головки по специальному шаблону наносится очень тонкий слой проводящего материала - железоникелевого сплава, величина индукции насыщения которого в 2-4 раза больше, чем у пермаллоя (ферромагнитного сплава). В результате, сердечник, на который наматывается обмотка, получается очень компактным. Малый вес и малые габариты TF-головок позволяют до 0,03 мкм уменьшить просвет между поверхностью диска и головкой. Небольшая высота TF-головок способствует тому, что в накопителе удается разместить большее количество магнитных дисков, без увеличения его высоты. Эти головки также имели хорошую остаточную намагниченность участков поверхности носителя.

Конструкция TF-головок позволяет изменять зазор между головкой и диском путем наращивания слоев алюминиевого сплава на рабочую поверхность головки. Уменьшение зазора дает увеличение остаточной намагниченности и повышается отношение сигнал-шум, так как увеличивается амплитуда сигнала. Кроме этого, алюминиевый сплав предотвращает повреждения головки о поверхность диска. Большим преимуществом TF-головок является уменьшение магнитных доменов на дисковой поверхности, что позволяет увеличить плотность записи.

Временем расцвета технологии TF-головок можно считать конец восьмидесятых - середина девяностых годов 20 века. С использованием тонкопленочных головок производились накопители емкостью от 100 МБ до нескольких Гбайт.

Магниторезистивные (MR):

Во-первых, сразу стоит оговориться, что магниторезистивный эффект используется только для построения головки чтения. Таким образом, магниторезистивные головки, в отличие от рассмотренных выше типов головок, состоят уже из двух частей:

головки записи;

головки чтения.

Модель такой разделенной по функциям головки чтения / записи демонстрируется на рис. 8, где очень хорошо видно, что запись и чтение осуществляется разными элементами головками.

Высокая чувствительность MR-головки чтения требует обязательного наличия экранирующих элементов, предотвращающих воздействие на головку внешних магнитных полей.

Свою историю магниторезистивные головки (Magnitoresitive - MR) начинают с начала 90-х. Первые поколения этих головок являлись анизотропными магниторезистивными головками (Anisotropic Magnitoresistive - AMR), и именно термином AMR обозначали их в различной документации. Позже данный тип головок стали обозначать просто MR, но сейчас в некоторых случаях возникает путаница, связанная с тем, что термином MR называют иногда и следующее поколение головок GMR. Именно поэтому в современных публикациях зачастую опять возвращаются к термину AMR для обозначения магниторезистивных головок.

Применение магниторезистивных головок позволяет добиться чрезвычайно высокой плотности записи данных и высокого быстродействия накопителя. Принцип работы головки основан на том, что при считывании данных реактивное сопротивление обмотки MR-головки оказывается различным при прохождении над участками с разными значениями остаточной намагниченности. Таким образом, магниторезистивная головка регистрирует не на изменения намагниченности (как это было в головках рассмотренных выше), а на величину намагниченности рабочего слоя диска.

В составе магниторезистивной головки чтения имеется добавочная обмотка, в которой создается постоянный измерительный ток. В момент, когда головка проходит над зоной намагниченности, сопротивление этой обмотки изменяется, а соответственно изменяется величина измерительного тока. Контролируя величину этого тока, управляющая схема регистрирует наличие полезного сигнала на выходе головки чтения. Амплитуда выходного сигнала MR-головки в несколько раз больше, чем тонкопленочной. Фактически, главным отличием MR-головки является то, что она представляет собой резистивный датчик магнитного поля, а не генератор электродвижущей силы, как описанные ранее головки.

В ферритовых, MIG и TF головках рабочий зазор между головкой и поверхностью накопителя один - и для операций запи