Социально-экономические явления и методы исследования связей между ними
Информация - Экономика
Другие материалы по предмету Экономика
? и .
Надежность получаемых оценок и зависит от дисперсии случайных отклонений (ошибок). По данным выборки эти отклонения и, соответственно, их дисперсия не оцениваются в расчетах используются отклонения зависимой переменной от ее расчетных значений : . Так как ошибки (остатки) нормально распределены, то среднеквадратическое отклонение ошибок используется для измерения этой вариации. Среднеквадратические отклонения коэффициентов известны как стандартные ошибки (отклонения):
(4.8)
где - среднее значение независимой переменной х;
стандартная ошибка, вычисляемая по формуле (4.8);
.
Проверка значимости отдельных коэффициентов регрессии связана с определением расчетных значений t-критерия (tстатистики) для соответствующих коэффициентов регрессии:
(4.9)
Затем расчетные значения сравниваются с табличными tтабл. Табличное значение критерия определяется при (n-2) степенях свободы (n - число наблюдений) и соответствующем уровне значимости (0,1; 0,05)
Если расчетное значение t-критерия с (n - 2) степенями свободы превосходит его табличное значение при заданном уровне значимости, коэффициент регрессии считается значимым. В противном случае фактор, соответствующий этому коэффициенту, следует исключить из модели (при этом ее качество не ухудшится).
По имеющейся информации о результатах деятельности 19 Российских предприятий, стоящих по рейтингу на первых позициях, построить уравнение линейной зависимости прибыли предприятий от размера собственного капитала.
Собранный статистический материал представлен в таблице 1.
Таблица 1. Данные о величине собственного капитала и прибыли Российских предприятий за 2005
РейтингНазвание предприятияСобственный капитал, млн. руб.Прибыль, млн. руб.12341"Газпром"27720003484002РЖД18510002375453ОАО "Сургутнефтегаз"7079132144794РАО "ЕЭС России"3862002034485Нефтяная компания "ЛУКойл"2221561263266ГМК "Норильский никель"2081431181597ТНК-ВР1650001104008"Связьинвест"167572957009Нефтяная компания "Сибнефть"1530008480010АФК "Система"1508447650311Сбербанк России1480006292912“Татнефть”1036533687613"Северсталь"1032753431214Нефтегазовая компания "Славнефть"1012702992315Евраз Груп775582951716"Русал"756002851217АК "Транснефть"46629460818АвтоВАЗ
На основании имеющихся данных найдем:
1)уравнение прямой регрессии У = а + bX , где У прибыль предприятий (результативный признак), Х размер собственного капитала (факторный признак).
2)тесноту связи между прибылью предприятий с помощью линейного коэффициента корреляции rху.
Получили, что коэффициенты регрессии а = 51,61 и b = 0,115. Таким образом, уравнение зависимости прибыли предприятий (У) от величины собственного капитала (Х) имеет вид: У = 51,61 + 0,115Х, т.е. при увеличении размера собственного капитала на 1 млн. руб. прибыль предприятий в среднем увеличивается на 115 тыс. руб.
Коэффициент корреляции rху = 0,867 свидетельствует о сильной и прямой связи между размером собственного капитала и прибылью организации.
Изобразим графически исходные данные о прибыли и размере собственного капитала и полученную прямую зависимости данных признаков.
5. Анализ и прогнозирование экономических показателей на основе регрессионных моделей
Регрессионные модели могут быть использованы для прогнозирования возможных ожидаемых значений зависимой переменной.
Прогнозируемое значение переменной получается при подстановке в уравнение регрессии
(5.1)
ожидаемой величины фактора . Данный прогноз называется точечным. Значение независимой переменной не должно значительно отличаться от входящих в исследуемую выборку, по которой вычислено уравнение регрессии.
Вероятность реализации точечного прогноза теоретически равна нулю. Поэтому рассчитывается средняя ошибка прогноза или доверительный интервал прогноза с достаточно большой надежностью.
доверительные интервалы, зависят от стандартной ошибки , удаления от своего среднего значения , количества наблюдений n и уровня значимости прогноза ?. В частности, для прогноза будущие значения с вероятностью (1 - ?) попадут в интервал
.
6. Измерение связей неколичественных переменных
Методы корреляционного и дисперсионного анализа не универсальны: их можно применять, если все изучаемые признаки являются количественными. При использовании этих методов нельзя обойтись без вычисления основных параметров распределения (средних величин, дисперсий), поэтому они получили название параметрических методов.
Между тем в статистической практике приходится сталкиваться с задачами измерения связи между качественными признаками, к которым параметрические методы анализа в их обычном виде неприменимы. Статистической наукой разработаны методы, с помощью которых можно измерить связь между явлениями, не используя при этом количественные значения признака, а значит, и параметры распределения. Такие методы получили название непараметрических.
Оценить тесноту связи между признаками можно с помощью коэффициентов взаимной сопряженности и коэффициентов контингенции или ассоциации.
В социально-экономических исследованиях нередко встречаются ситуации, когда признак не выражается количественно, однако единицы совокупности можно упорядочить. Такое упорядочение единиц совокупности по значе