Соотношение интуитивного и логического в математике

Информация - Философия

Другие материалы по предмету Философия



ь математической интуицией.

Феномен интуиции чрезвычайно широк и не всегда то, что считают интуитивным, действительно заслуживает такого названия. Нередко можно встретить умозаключения, посылки которых не формулируются в явном виде, и результаты кажутся неожиданными, но они вовсе не интуитивны, как можно предположить. Для того, чтобы таких случаев было как можно меньше, в математике добиваются возможно большей, на современном этапе абсолютной строгости. При этом посылки силлогизмов должны быть выписаны явным образом. Слово интуиция применяется также к сенсорно-чувственной интуиции, но математическая интуиция по своей сути есть интуиция интеллектуальная.

И еще одна чрезвычайно важная черта свойственна интуиции --- ее непосредственность. Непосредственным знанием (в отличие от опосредованного) принято называть такое, которое не опирается на логическое доказательство. Интуиция является непосредственным знанием только в том отношении, что в момент выдвижения нового положения оно не следует с логической необходимостью из существующего чувственного опыта и теоретических построений. ootnote Копнин П.В. "Гносеологические и теоретические основы науки". С.190 Иначе говоря, интуиция --- это способность постижения истины путем прямого ее усмотрения без обоснования с помощью доказательства. ootnote "Философский энциклопедический словарь", М.,1989. С.221 Приведем примеры. Свои ощущения и размышления излагает Анри Пуанкаре в книге "Наука и метод".

"В течении двух недель я старался доказать, что невозможна никакая

функция, которая была бы подобна тем, которым я впоследствии дал

название фуксовых функций; в то время я был еще весьма далек от того,

что мне было нужно. Каждый день я усаживался за свой рабочий стол,

проводил за ним один-два часа, перебирал большое число комбинаций и не приходил ни к какому результату. Однажды вечером я выпил, вопреки своему обыкновению, чашку черного кофе; я не смог заснуть; идеи возникали во множестве; мне казалось, что я чувствую, как они сталкиваются между собой, пока, наконец, две из них, как бы iепившись друг с другом, не образовали устойчивого соединения. Наутро я установил существование класса функций Фукса, а именно тех, которые получаются из гипергеометрического ряда; мне оставалось лишь сформулировать результаты, что отняло у меня лишь несколько часов."

Далее он подробно описывает свои дальнейшие размышления над развитием теории фуксовых функций, и каждый новый шаг характеризуется тем толчком, или озарением, а затем кропотливой работой по записи и логическому оформлению результатов.

Бертран Рассел отмечал, что иногда его попытки протолкнуть силой воли ход творческой работы оказывались бесплодными, и он убеждался в необходимости терпеливо ожидать подсознательного вызревания идей, что было результатом напряженных размышлений. "Когда я работаю над книгой, --- писал он, --- я вижу ее во сне почти каждую ночь. Не знаю, возникают ли при этом новые идеи или оживляются старые, зачастую я вижу целые страницы и могу во сне прочесть их." ootnote Цит. по "Интуиция и научное творчество". Аналитический сборник ИНИОН. М.,1981. С.17 Примеров тому можно привести много, и, конечно же, не только из области математики. Здесь вспоминается и Эйнштейн, и химик Кекуле, которому приснилась формула бензола, и Менделеев, которому приснилась его таблица.

Но все изложенное выше демонстрирует по крайней мере еще две черты, свойственные интуиции: внезапность и неосознанность. Решение проблемы в этих примерах приходило всегда неожиданно, случайно, и казалось бы , в неподходящих для творчества условиях, так или иначе непохожих на условия целенаправленного научного поиска.

Интуитивное видение совершается не только случайно, но и без явной осознанности путей и средств, приводящих к данному результату. Причем иногда неосознанным остается и результат, а самой интуиции при таком исходе ее действия уготована лишь участь возможности, не становящейся действительностью. Человек может вообще не сохранить никаких воспоминаний о моменте озарения. Одно замечательное наблюдение было сделано американским математиком Леонардом Юджином Диксоном. Его мать и ее сестра, которые в школе были соперницами по геометрии, провели долгий и бесплодный вечер над решением какой-то задачи. Ночью матери приснилась эта задача, и она стала решать ее вслух громким и ясным голосом. Ее сестра, услышав это, встала и записала. На следующее утро в ее руках было правильное решение, неизвестное матери Диксона ootnote Налчаджян А.А. "Некоторые психологические и философские проблемы интуитивного познания (интуиция в процессе научного творчества)".

М.,1972.. Аналогичный пример, правда, не принадлежащий области математики, можно привести и с "адимиром Маяковским. По его словам, у него никак не складывались нужные строчки, отражающие его чувства и обстановку в Петрограде времен гражданской войны. Он промучился весь вечер и лег спать. Во сне ему приснились наконец нужные строчки, он вскочил и записал их на спичечном коробке, валявшемся на столе. С утра он очень долго не мог вспомнить, откуда они взялись.

Таким образом, интуитивной способности человека свойственны следующие особенности:

1) неожиданность решения задачи;

2) неосознанность путей и средств ее решения;

3) непосредственность постижения истины на сущностном уровне объекта.

С чем же связана такая быстрота и эффективность интуиции? Рассмотрим вопрос с психофизиологической точк