Собственные колебания пластин

Дипломная работа - Математика и статистика

Другие дипломы по предмету Математика и статистика

p>.

Глава II Нахождение функции, описывающей собственные колебания мембраны

2.1 Основные определения

В этой главе использованы следующие обозначения

  • - частная производная функции по ;

  • - производная функция одной переменной.

  • Мембраной называется плоская пластинка, не сопротивляющаяся изгибу и сдвигу. Мы будем рассматривать поперечные колебания мембраны, в которых смещение перпендикулярно к плоскости мембраны. Отклонение точек мембраны от плоскости xOy будем обозначать через функцию

    , которая зависит от координат точки (x, y) и от времени t. Вывод дифференциальных уравнений задач математической физики сопровождается целым рядом допущений как механических, так и геометрических. Так при выводе уравнения колебания прямоугольной мембраны мы пренебрегли квадратом частных производных

    .

В результате получается следующее уравнение колебаний прямоугольной мембраны

.

В случае рассмотрения мембраны круглой формы полезно перейти к полярным координатам. Пусть мембрана в состоянии покоя занимает круг радиуса с центром в начале координат. Введем полярные координаты , . Уравнение границы круга будет при этом . Отклонение точек мембраны является теперь функцией полярных координат и и времени t:

.

Выражение для оператора в полярных координатах имеет вид

,

Тогда уравнение колебаний мембраны (2.1.1) перепишется в виде

.

В данной главе нам еще понадобится определение ортогональных функций в следующем виде:

Система функций называется ортогональной на интервале , если интеграл от произведения любых двух различных функций системы равен нолю: (). Это условие ортогональности отличается от обычного тем, что под интегралом содержится множитель , в таких случаях говорят об ортогональности с весом [1].

2.2 Собственные колебания прямоугольной мембраны

Процесс колебания плоской однородной мембраны описывается уравнением

Пусть в плоскости (x, y) расположена прямоугольная мембрана со сторонами b1 и b2, закрепленная по краям. Ее колебание вызывается с помощью начального отклонения и начальной скорости.

Для нахождения функции , характеризующей отклонение мембраны от положения равновесия (прогиб), нужно решить уравнение колебаний при заданных начальных условиях

и граничных условиях

.

Краткое решение задачи (2.2.1) (2.2.3) приведено в книге [8], где были получены следующие результаты.

Функция имеет вид

,

где - собственные функции, соответствующие собственным значениям (полученным в результате применения метода Фурье) и определяющиеся формулой

.

А коэффициенты и равны:

,

.

Найдем решение задачи при других граничных условиях.

Итак, для нахождения функции , характеризующей прогиб мембраны мы должны решить уравнение колебаний мембраны (2.2.1) при заданных начальных условиях

и граничных условиях

.

Будем искать решение методом Фурье. Пусть функция

и не равна тождественно нулю. Подставляем выражение функции в уравнение (2.2.1) и, поделив обе части уравнения на (при этом мы не теряем решений, т. к. ), получаем

.

Чтобы функция (2.2.6) была решением уравнения (2.2.1), равенство (2.2.7) должно удовлетворяться тождественно, т.е. для любых значений переменных , , . Правая часть равенства (2.2.7) является функцией только переменных (x,y), а левая только t. Фиксируя, например, некоторые значения x и y и меняя t (или наоборот), получаем, что правая и левая части равенства при изменении своих аргументов сохраняют постоянное значение, пусть оно равно .

,

где - постоянная, которую для удобства последующих выкладок берем со знаком минус, ничего не предполагая при этом о ее знаке.

Из соотношения (2.2.8) получаем однородное дифференциальное уравнения второго порядка для функции :

,

а для функции следующую краевую задачу:

Таким образом, сама задача о собственных значениях состоит в решении однородного уравнения в частных производных при заданных граничных условиях. Снова применим метод разделения переменных. Пусть

и не равна тождественно нулю. Подставляем выражение функции в уравнение и, поделив обе части уравнения на , приведем его к виду

.

Правая часть равенства (2.2.10) является функцией только переменной y, а левая только x. Фиксируя, например, некоторые значения x и меняя (или наоборот), получаем, что правая и левая части равенства при изменении своих аргументов сохраняют постоянное значение, пусть оно равно .

Тогда из данного соотношения получаем два однородных дифференциальных уравнения второго порядка:

  1. где

    и - постоянные разделения переменных, причем . При этом граничные условия для и вытекают из соответствующих условий для функции .

    ,

    ,

,

.

Получаем следующие одномерные задачи на собственные значения:

  1. (2.2.11)

  2. (2.2.12)

- линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Таким образом, общее решение данного уравнения зависит от параметра . Рассмотрим отдельно случаи, когда параметра отрицателен, равен нулю, положителен.

  1. При

    задача не имеет нетривиальных решений. Общее решение уравнения имеет вид

  2. ,

т. к. характеристическое уравнение имеет корни .

Учитывая граничные условия, получаем:

т.к. - действительно и положительно, то .

  1. При

    нетр?/p>