Синхронные машины. Машины постоянного тока

Методическое пособие - Физика

Другие методички по предмету Физика

каналы для подачи воздуха к обмотке возбуждения

 

В СССР синхронные компенсаторы выпускают серийно мощностью от 10 до 100 MBА.Для них характерно наличие роторов облегченной конструкции, так как вал ротора не должен передавать значительный вращающий момент (компенсатор обычно работает в режиме ненагруженного электродвигателя). Устанавливают синхронные компенсаторы в помещениях или под открытым небом. Во втором случае их выполняют с герметизированным корпусом; герметизация упрощается тем, что выводить наружу конец вала не требуется. Обмотку возбуждения у синхронных компенсаторов рассчитывают на большую (чем у генераторов и электродвигателей) м.д.с., так как они должны обеспечивать работу с перевозбуждением.

Дизель-генераторы. Эти генераторы предназначены для привода во вращение от двигателей внутреннего сгорания (дизелей). Их выполняют, как правило, явнополюсными с горизонтальным расположением вала. Дизель-генераторы имеют обычно один подшипник, в качестве второй опоры ротора используют подшипник самого дизеля, вал которого жестко соединен с валом ротора генератора. Возбудитель устанавливают непосредственно на валу ротора или же он приводится от него во вращение с помощью клиноременной передачи.

В СССР дизель-генераторы выпускают серийно мощностью от нескольких кВА до нескольких МВА при частотах вращения от 100 до 1500 об/мин.

Синхронные двигатели. Их выполняют, как правило, с горизонтальным расположением вала (см. рис.1.11, в), хотя некоторые мощные двигатели имеют и вертикальное расположение. Эти машины изготовляют на щитовых или стояковых подшипниках, с самовентиляцией, а в некоторых случаях с независимым воздушным охлаждением.

В СССР выпускают синхронные двигатели мощностью до нескольких десятков МВт при частотах вращения от 100 до 3000 об/мин. При частотах вращения от 100 до 1000 об/мин электродвигатели выполняют явнополюсными, а при 1500 и 3000 об/мин неявно-полюсными.

 

1.4 Работа синхронного генератора при холостом ходе

 

Э.д.с. в обмотке якоря. При холостом ходе магнитный поток генератора создается обмоткой возбуждения. Этот поток направлен по оси полюсов ротора и индуктирует в фазах обмотки якоря э.д.с. Первая гармоника Е0 этой э.д.с. определяется по той же формуле, что и первая гармоника э.д.с. для асинхронной машины:

 

E0=4,44f1?akобaФв, (1.3)

где ?a и ko6a число витков в фазе и обмоточный коэффициент обмотки якоря; Фв поток первой гармоники магнитного поля возбуждения.

При небольших токах возбуждения магнитный поток мал и стальные участки магнитопровода машины не насыщены, вследствие чего их магнитное сопротивление мало. В этом случае магнитный поток практически определяется только магнитным сопротивлением воздушного зазора между ротором и статором, а характеристика холостого хода E0 = f (Iв) или в другом масштабе Фв = f(Iв) имеет вид прямой линии (рис.1.16). По мере возрастания потока растет магнитное сопротивление стальных участков магнитопровода. При индукции в стали более 1,71,8Т магнитное сопротивление стальных участков сильно возрастает и характеристика холостого хода становится нелинейной. Номинальный режим работы синхронных генераторов приблизительно соответствует колену кривой характеристики холостого хода; при, этом коэффициент насыщения kнac, т.е. отношение отрезков ab/ac, составляет 1,1 1,4.

При рассмотрении работы синхронной машины в ряде случаев для облегчения математического анализа не учитывают нелинейность кривой холостого хода, заменяя ее прямой линией. Спрямленную характеристику проводят или как касательную к кривой холостого хода (рис.1.16, прямая 1), или через точку b, соответствующую рассматриваемому режиму работы, например при номинальном напряжении (прямая 2). В первом случае спрямленная характеристика соответствует работе машины при отсутствии насыщения. Во втором случае она учитывает некоторое среднее насыщенное состояние магнитной цепи машины.

 

Рис.1.16 Характеристика холостого хода синхронного генератора

 

В теории синхронной машины широко используют систему относительных единиц. Основные параметры машины (ток, напряжение, мощность, сопротивления) выражают в долях соответствующей базисной величины. В качестве базисных единиц при построении характеристики холостого хода принимают номинальное напряжение Uном машины и ток холостого хода Iв0, при котором Е0 = Uном. Относительные значения э.д.с. и тока возбуждения при этом запишутся следующим образом:

 

E0*=E0/Uном; I0*=Iв/Iв0

 

Характеристики холостого хода, построенные в относительных единицах для различных синхронных генераторов, при одинаковых коэффициентах насыщения совпадают. Поэтому характеристика холостого хода в относительных единицах может быть принята единой для всех генераторов; для каждого конкретного генератора различие будет только в базисных единицах и коэффициентах насыщения.

Форма кривой напряжения. Напряжение, индуктированное в обмотке якоря при холостом ходе, по возможности должно быть синусоидальным. Согласно ГОСТ 18374 напряжение считается практически синусоидальным, если разность между ординатой действительной кривой напряжения и ординатой синусоиды в одной и той же точке для генераторов мощностью до 1 MBА не превышает 10%, а для генераторов свыше 1 MBА-5% от амплитуды основной синусоиды. Чтобы получить кривую