Решения задач линейного программирования геометрическим методом

Курсовой проект - Экономика

Другие курсовые по предмету Экономика

трицательности переменных: x1 ? 0 и х2 ? 0. Эти два ограничения показывают, что пространство допустимых решений будет лежать в первом квадранте (т.е выше оси x1 и правее оси х2).

Чтобы учесть оставшиеся ограничения, проще всего заменить неравенства на равенства, в результате чего получится система уравнений прямых:

 

3х1 + х2 = 75;

х1 + х2 = 30;

х1 +4х2 = 84.

 

а затем на плоскости провести эти прямые.

Например, неравенство 3х1 + х2 ? 75 заменяется уравнением прямой 3х1 + х2 = 75. Чтобы провести эту линию, надо найти две различные точки, лежащие на этой прямой Можно положить х1 = 0, тогда х2 = 75/1 = 75.. Аналогично для х2 = 0 находим x1 = 75/3 = 25. Итак, наша прямая проходит через две точки (0, 75) и (25;0). Аналогично найдём остальные точки и запишем их в таблицу 1.2..

Таблица 1.2.

3х1 +х2 ? 75; х1 +х2 ? 30; х1 +4х2 ? 84. х1х2х1х2х1х2075030021250300840

Согласно данной таблицы, построим график в программе Excel.

 

 

Заштрихованная область, изображённая на рисунке, является областью допустимых значений функции F. Т.к. целевая функция F стремиться к max, то идя по направлению вектора n, получим точку B с оптимальным решением. Для определения ее координаты возьмем две прямые, на пересечении которых она образуется:

3х1 + х2 ? 75, х1 = 19,64,

х1 + 4х2 ? 84, х2 = 16,09. , т. е. B(16,09; 19,64)

 

максимальное значение линейной функции равно :

Fmax = 30*16,09 + 40*19,64 = 1232,80.

Итак, Fmax = 1232,80 при оптимальном решении х1 = 16,09, х2 = 19,64, т. е. максимальная прибыль в 1232,80 ден. ед. может быть достигнута при производстве 16,09 единиц продукции А и 19,64 единиц продукции В.

Ответ: Fmax = 1232,80.

 

Задача № 2

 

Для изготовления двух видов продукции Р1 и Р2 используют три вида сырья: S1, S2, S3. Запасы сырья, количество единиц сырья, затрачиваемых на изготовление единицы продукции, а также величина прибыли, получаемая от реализации единицы продукции, приведены в таблице 2.1.

 

Таблица 2.1.

Вид сырьяЗапас сырьяКоличество единиц сырья, идущих на изготовление единицы продукцииР1Р2S12025S24085S33056Прибыль от единицы продукции, руб.5040

Необходимо составить такой план выпуска продукции, чтобы при ее реализации получить максимальную прибыль.

Решение.

Обозначим через х1 количество единиц продукции Р1, а через х2 количество единиц продукции Р2. Тогда, учитывая количество единиц сырья, расходуемое на изготовление продукции, а так же запасы сырья, получим систему ограничений:

 

2х1 + 5х2 ? 20

8х1 + 5х2 ? 40

5х1 + 6х2 ? 30

 

которая показывает, что количество сырья, расходуемое на изготовление продукции, не может превысит имеющихся запасов. Если продукция Р1 не выпускается, то х1=0; в противном случае x1 = 0. То же самое получаем и для продукции Р2. Таким образом, на неизвестные х1 и х2 должно быть наложено ограничение неотрицательности: х1 ? 0, х2 ? 0.

Конечную цель решаемой задачи получение максимальной прибыли при реализации продукции выразим как функцию двух переменных х1 и х2. Реализация х1 единиц продукции Р1 и х2 единиц продукции Р2 дает соответственно 50х1 и 40х2 руб. прибыли, суммарная прибыль Z = 50х1 + 40х2 (руб.)

Условиями не оговорена неделимость единица продукции, поэтому х1 и х2 (план выпуска продукции) могут быть и дробными числами.

Требуется найти такие х1 и х2, при которых функция Z достинает максимум, т.е. найти максимальное значение линейной функции Z = 50х1 + 40х2 при ограничениях

 

2х1 + 5х2 ? 20

8х1 + 5х2 ? 40

5х1 + 6х2 ? 30

х1 ? 0, х2 ? 0.

 

Изобразим многоугольник решений данной задачи.

В ограничениях задачи поменяем знаки неравенства на знаки равенства.

Построим в программе Excel таблицы нахождения точек пересечения линий с осями координат (Рисунок 1) и график (Рисунок 2).

 

Рисунок 1.

 

Рисунок 2.

 

Заштрихованная область, изображённая на рисунке, является областью допустимых значений функции Z. Т.к. целевая функция Z стремиться к max, то идя по направлению вектора n, получим точку C с оптимальным решением. Для определения ее координаты возьмем две прямые, на пересечении которых она образуется:

 

8х1 + 5х2 ? 40 х1 = 3,91,

5х1 + 6х2 ? 30, х2 = 1,74. , т. е. C(3,91; 1,74)

 

максимальное значение линейной функции равно :

Zmax = 50*3,91 + 40*1,74 = 265,10.

Итак, Zmax = 265,10 при оптимальном решении х1 = 3,91, х2 = 1,74, т. е. максимальная прибыль в 1232,80 ден. ед. может быть достигнута при производстве 3,91единиц продукции P1 и 1,74 единиц продукции P2.

Ответ: Zmax = 265,10.

 

Задача № 3

 

Питательные веществаЧисло единиц питательных веществ в 1 кг кормаНеобходимый минимум питательных веществABS1318S2129S31612Минимальная стоимость за 1 кг корма, в руб..46?

Имеется два вида корма. A и B, содержащие вещества(витамины) S1, S2, S3. Содержание числа единиц питательных веществ в одном кг каждого вида корма и необходимый минимум самих питательных веществ даны в таблице:

Решение:

Пусть х1 и х2 количество кормов вида А и В соответственно. В одном килограмме каждого вида корма содержится (3х1 + х2) единиц питательного вещества S1, (x1 + 2x2) - S2 и (x1 + 6x2) - S3. Так количество питательных веществ не должно быть меньше необходимого минимума, то запишем следующую систему неравенств:

 

3х1 + х2 ? 8,

x1 + 2x2 ? 9,

x1 + 6x2 ? 12,

x1, x2 ? 0.

 

Минимальную стоимость витаминов за 1 кг корма, выразим следующей функцией : F = 4x1 + 6x2 => min.

Изобразим многоугольник решений данной задачи.

В ограничениях задачи поменяем знаки неравенства на знаки равенства.

Построим в программе Excel таблицы нахождения точек п