Атомно-силовой микроскоп

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование

?ирование) либо сканеры, снабжённые замкнутыми следящими системами, в состав которых входят линейные датчики положения.

В сравнении с растровым электронным микроскопом и просвечивающим электронным микроскопом.

К недостатку АСМ при его сравнении с РЭМ также следует отнести небольшой размер поля сканирования. РЭМ в состоянии просканировать область поверхности размером в несколько миллиметров в латеральной плоскости с перепадом высот в несколько миллиметров в вертикальной плоскости. У АСМ максимальный перепад высот составляет несколько микрон, а максимальное поле сканирования в лучшем случае порядка 150150 микрон.

Обычный АСМ не в состоянии сканировать поверхность также быстро, как это делает РЭМ. Для увеличения быстродействия АСМ было предложено несколько конструкций, среди которых можно выделить зондовый микроскоп, названный видеоАСМ. ВидеоАСМ обеспечивает получение удовлетворительного качества изображений поверхности с частотой телевизионной развёртки, что даже быстрее, чем на обычном РЭМ. Однако, применение Видео АСМ ограничено, так как он работает только в контактном режиме и на образцах с относительно небольшим перепадом высот.

 

Заключение

 

Новая экспериментальная методика всегда позволяет увидеть и узнать то, что ранее было неизвестно. АСМ можно использовать для определения типа атома в кристаллической решётке. С помощью атомно-силового микроскопа удается наблюдать многие события, разыгрывающиеся на поверхности растущего кристалла (особенно кристалла белка), но, к сожалению, не все. Острие иглы кривизной 5 нм может различить периодическую структуру молекул на порядок меньшего размера, но не может различить адсорбированные поверхностью отдельные молекулы такого размера. Пока в растворе удается увидеть элементарные акты при соединения строительных единиц к кристаллам белков, но не к кристаллам неорганических соединений. В последнем случае неизвестно, что присоединяется к изломам, что является строительной единицей - ионы, молекулы или их группы. Это сдерживает развитие теории и не позволяет предсказать влияние различных факторов на кинетику кристаллизации. Нет также способа узнать, что происходит в приповерхностном слое раствора. Находящиеся в растворе ионы, молекулы и их комплексы окружены гидратными оболочками, непонятно где, как и в какой момент происходит освобождение от них. Сейчас можно только гадать, какой именно прибор позволит разобраться в этом.

Перспективным направлением считается совмещение сканирующих зондовых микроскопов с другими традиционными и современными методами исследованиями, а также создание принципиально новых приборов. Например, совмещение СЗМ с оптическими микроскопами

Библиографический список использованной литературы

 

1.

2.Атомный силовой микроскоп. Журналы. Наука и техника 1989. №9.

3.В. Л. Миронов, Основы сканирующей зондовой микроскопии. Российская академия наук, Институт физики микроструктур г. Нижний Новгород, 2004 г.

4.Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. - М.: ФИЗМАТЛИТ, 2007.

.Суслов А. А., Чижик С. А. Сканирующие зондовые микроскопы (обзор) // Материалы, Технологии, Инструменты - Т.2 (1997), № 3

6.Учебно-научный центр Бионаноскопия [Электронный ресурс]