Атомно-силовой микроскоп

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование

ллярных сил. При таком методе также исключаются различные латеральные силы и силы трения, которые могут приводить к смещению структур на плоскости образца.

Несмотря на то, что при описании работы атомно-силового микроскопа, очень часто упоминаются лишь силы Ван-дер-Ваальса, в реальности со стороны поверхности также действуют упругие силы . Их вклад особенно очевиден при работе в полуконтактном режиме, когда вследствие "прилипания" кантилевера к поверхности возникает гистерезис которые могут существенно усложнять процесс получения изображения и интерпретацию результатов.

Кроме того со стороны поверхности возможно действие магнитных и электростатических сил. Используя определённые методики и специальные зонды можно узнать их распределение по поверхности.

Наглядное трёхмерное изображение поверхности получается лишь после соответствующей математической обработки цифровой информации, в качестве которой выступают двумерные массивы целых чисел, например, отклонения кантилевера. Существует множество разных алгоритмов обработки, необходимость использования которых зависит от цели экспериментатора и от конкретной ситуации. Ведь процесс сканирования идеальным не бывает - обязательно появляются различные флуктуационные выбросы, которые надо как-то сглаживать или фильтровать. Приходится также учитывать тепловой дрейф образца или нелинейности пьезокерамического манипулятора. Разумеется, всю вычислительную работу выполняет компьютер и выдаёт в качестве результата уже готовое изображение.

Важную роль в получении хорошего изображения в АСМ играет приготовление образцов. В ряде случаев особого приготовления образцов не требуется (например, при наблюдении поверхности графита). Однако при работе с (био)химическими веществами и молекулами, их обычно каким-то образом адсорбируют на подложке. Например, для наблюдения ДНК, её наносят на поверхность слюды, модифицированной ионами двухвалентных металлов.

Хорошее качество изображения молекул получается, когда они погружены в жидкость (обычно воду). Это происходит потому, что в воде заметно снижаются силы взаимодействия между зондом и образцом, а, следовательно, не происходит залипания. Наблюдение в водных средах позволяет исследовать процессы in vitro, например, самосборку актиновых филаментов.

Большой интерес представляет собой изучение с помощью атомно-силового микроскопа живых биологических объектов - бактерий, вирусов, клеток. Уже есть работы, в которых напрямую наблюдали динамику того или иного процесса, например, образование микропор в бактериальной стенке при воздействии ионов кальция. Такое использование АСМ также перспективно в медицине, например, для получения экспресс-анализов и диагностики заболеваний. На рисунке представлено изображение бактерий Klebsiella.

 

5. Основные технические сложности при создании микроскопа

 

Создание иглы, заострённой действительно до атомных размеров.

Обеспечение механической (в том числе тепловой и вибрационной) стабильности на уровне лучше 0,1 ангстрема.

Создание детектора, способного надёжно фиксировать столь малые перемещения.

Создание системы развёртки с шагом в доли ангстрема.

Обеспечение плавного сближения иглы с поверхностью.

В сравнении с растровым электронным микроскопом атомно-силовой микроскоп обладает рядом преимуществ. Атомно-силовая микроскопия позволяет получить истинно трёхмерный рельеф поверхности. Кроме того, изучаемая поверхность не требует нанесения проводящего металлического покрытия, которое часто приводит к заметной деформации поверхности. Для нормальной работы растрового электронного микроскопа требуется вакуум, в то время как большинство режимов атомно-силовой микроскопии могут быть реализованы на воздухе или даже в жидкости. Данное обстоятельство открывает возможность изучения биомакромолекул и живых клеток.

К недостаткам атомно-силовой микроскопии следует отнести небольшой размер поля сканирования. Максимальный перепад высот составляет несколько микрон, а максимальное поле сканирования в лучшем случае составляет порядка 150150 микрон. Другая проблема заключается в том, что при высоком разрешении качество изображения определяется радиусом кривизны кончика зонда, что при неправильном выборе зонда приводит к появлению артефактов на получаемом изображении.

Обычный атомно-силовой микроскоп не в состоянии сканировать поверхность также быстро, как это делает растровый электронный микроскоп. Для получения изображения, требуется от нескольких минут до нескольких часов, в то время как растровый электронный микроскоп после откачки способен работать практически в реальном масштабе времени, хотя и с относительно невысоким качеством. Из-за низкой скорости развёртки атомно-силового микроскопа получаемые изображения оказываются искажёнными тепловым дрейфом, что уменьшает точность измерения элементов сканируемого рельефа. Кроме термодрейфа получаемые изображения могут также быть искажены из-за таких свойств пьезокерамики, как нелинейность, крип и гистерезис и перекрёстными паразитными связями, действующими между X, Y, Z-элементами сканера. Для исправления искажений в реальном масштабе времени современные атомно-силовые микроскопы используют программное обеспечение (например, особенность-ориентированное ска?/p>