Регулирование адаптивной поверхности главного зеркала радиотелескопа
Дипломная работа - Компьютеры, программирование
Другие дипломы по предмету Компьютеры, программирование
Введение
Дипломная работа связана с решением задачи регулирования адаптивной поверхности главного зеркала радиотелескопа, предназначенного для работы в миллиметровом диапазоне радиоволн.
Отклонение поверхности зеркала не должно превышать 0,02 мм. При наклонах зеркало деформируется, что приводит к отклонению его отражающей поверхности. Требуется регулировка поверхности. Она выполняется в виде отражающих щитов, которые являются частями теоретической поверхности. Регулировка щитов осуществляется в четырех точках, расположенных в углах щитов, посредством толкателей (актуаторов).
В дипломной работе анализируются результаты моделирования полномасштабной конечно-элементн6ой модели в системе ANSYS. Результаты моделирования используются для расчета аппроксимирующего параболоида по полю заданных точек.
Излагается методика расчета невязок фактического положения щитов (фасет) отражающей поверхности относительно аппроксимирующего параболоида. Регулирование положения фасет осуществляется посредством линейных приводов. Характерной особенностью приводов является то, что они работают в режиме изменения величин деформаций. Такой режим связан с изменением упругой силы, то есть переменной нагрузки на электродвигатель. Требуется синтезировать систему управления таким электроприводом.
Расчет производился в соответствии со следующими исходными данными:_p=0,01 м - перемещение _p=0,1 с - время перемещения_fo_max=10^-5 м - максимальная ошибка слежения_id=45 об/мин - число оборотов ИД _id_max=0,102 кгм - крутящий момент_id = 4,5 Вт - мощность ИД _id=22 В - напряжение ИД_id=0,137 А - пусковой ток _id_j=0,01 с - постоянная времени якорной цепи ИД_r=0,1 с - время разгона_pz=5 кг - масса_m=10 Гц - резонансная частота_m=0,05 - коэффициент диссипативных потерь
Развитие современной радиоастрономии и дальней космической связи возможно лишь на основе создания крупногабаритных прецизионных и полностью автоматизированных антенных комплексов, способных работать в широком диапазоне частот с практически полным обзором небесной сферы. Этим требованиям в наибольшей степени отвечают полноповоротные зеркальные антенны, обеспечивающие получение больших коэффициентов усиления и высокой разрешающей способности, что позволяет применять их в радиосвязи, радиоастрономии, радиолокации и в технике дельней космической связи.
Современное развитие антенных систем радиотелескопов связано с повышением чувствительности и разрешающей способности за счет увеличения диаметров зеркал (~ 100 м) и уменьшения рабочей длины волн (~ 1-10 мм). В связи с этим повышаются требования, предъявляемые к точности создания отражающей поверхности антенны и сохранение ее в процессе эксплуатации при воздействии на нее изменяющихся в зависимости от времени и положения антенны гравитационных, ветровых и тепловых полей. Чтобы удовлетворить упомянутым требованиям, оптическая система антенны при сохранении требуемых радиотехнических характеристик должна обладать многовариантностью реализации форм и расположения, которые можно использовать для удовлетворения конструктивно-технологических и эксплуатационных требований. Для этого математический аппарат, описывающий поведение антенны, должен обладать не только способностью реализовывать, требуемые радиотехнические характеристики, но и большой гибкостью в части выбора геометрических форм и положения в пространстве отражающих поверхностей. Создание такого математического аппарата является актуальной задачей. Исключительно высокие требования, предъявляемые к точности отражающей поверхности больших радиотелескопов, обуславливают необходимость получения информации о механическом поведении конструкции под действием различных внешних воздействий на всех стадиях проектирования и эксплуатации радиотелескопа.
Необходимость и способы компенсации влияния деформаций от воздействия сил собственного веса металлоконструкции на поверхность полноповоротных зеркальных радиотелескопов отражен в работах российских и иностранных ученых и конструкторов: М.Ю. Архипова, Л.Д. Бахраха, И.С. Виноградова, Д.И. Воскресенского, М.А. Гурбанязова, П.Д. Калачева, А.Н. Козлова, А.Г. Соколова, В.В. Кузнецова, В.С. Поляка, В.Б. Тарасова, В.И. Усюкина, У. Христиансена, И. Хёгбома, С. Хорнера.
Большие зеркальные антенны, работающие под открытым небом, подвергаются воздействию различных климатических факторов и в том числе - солнечной радиации. Моделирование и исследования в данном классе задач - Деформация отражающей поверхности главного зеркала, были проведены профессором, кандидатом технических наук А.И. Боровковым и представлены в работе Конечно-элементное моделирование и исследование проблем механики радиотелескопа РТ-70. Цель данной работы состояла в следующем:
. Разработка и построение иерархических последовательностей математических и 3-D КЭ моделей, с высокой степенью адекватности описывающих поведение радиотелескопа РТ-70 под действием температурных и гравитационных воздействий; выполнение многовариантных КЭ исследований с целью изучения 3-D деформированного состояния радиотелескопа;
. На основе вычисленных деформированных состояний радиотелескопа РТ-70 в зависимости от различных геометрических и климатических параметров:
.1. Построить семейство параболоидов, аппроксимирующих с высокой степенью точности реальное 3-D деформированное состояние основного рефлектора;
.2. Определить векторы смещения узлов крепления домкратов к фацетам в соответствующие