Регулирование адаптивной поверхности главного зеркала радиотелескопа
Дипломная работа - Компьютеры, программирование
Другие дипломы по предмету Компьютеры, программирование
точки поверхности аппроксимирующего параболоида, определённой на основе вычисленных 3-D деформированных состояний основного зеркала радиотелескопа в зависимости от различных геометрических и климатических параметров;
.3. Определить вектор смещения контррефлектора, находящегося на деформируемых опорах, в фокус аппроксимирующего параболоида.
Для достижения поставленных целей необходимо решить задачи:
. Разработка и построение полномасштабной 3-D CAD-модели радиотелескопа РТ-70;
. Разработка и построение иерархических последовательностей 3-D КЭ моделей (гравитационных и тепловых) и выполнение КЭ исследований для настройки математических моделей и определения 3-D деформированного состояния, возникающего в радиотелескопе РТ-70 под действием температурных и гравитационных воздействий;
. Многовариантные КЭ исследования и вычисления глобальных матриц температур и глобальных матриц перемещений для различных геометрических и климатических параметров;
. Построение семейства аппроксимирующих параболоидов с помощью метода наименьших квадратов путем минимизации суммы квадратов отклонений между расчетными положениями узлов КЭ модели и их положением на аппроксимирующем параболоиде;
. Определить вектор смещения узлов крепления домкратов к фацетам в соответствующие точки поверхности аппроксимирующего параболоиде;
. Определить вектор смещения контррефлектора в фокус построенного аппроксимирующего параболоида.
В работе использовались методы теории теплопроводности и
упругости. Все расчётные исследования выполнены с помощью метода конечных элементов и программной системы конечно-элементного анализа ANSYS.
Полноповоротные зеркальные антенны способны работать в широком диапазоне частот с практически полным обзором небесной сферы и обеспечивают получение больших коэффициентов усиления и высокой разрешающей способности, что позволяет применять их в радиосвязи, радиоастрономии, радиолокации и в технике дальней космической связи.
Основным элементом антенн этого типа является зеркало, которое собирает падающее на него излучение в фокальной точке (параболическое зеркало) либо на фокальной линии (параболический цилиндр, сферическое зеркало). В фокусе устанавливается облучатель в виде рупора либо цепочки диполей. Диаграмма направленности облучателя формируется так, чтобы облучить все зеркало (собрать с него всю энергию), но исключить облучение пространства вне его. Этим достигаются максимальное использование поверхности зеркала и минимальный уровень шумов. Для исключения искажения фронта отраженной волны неровности поверхности зеркала не должны превышать ?/20. Форма поверхности зеркала должна сохраняться в этих пределах при разных температурax, ветровых нагрузках и положении антенны. Эти требования ограничивают размеры зеркал, минимальную длину волны и определяют их стоимость, поэтому первые крупные антенны зеркального типа были неподвижными или полуподвижными. Оптимизация параметров радиотелескопов привела к ряду конструктивных решений - созданию зеркальных антенн разных типов и классов. Наибольшее распространение получили параболические зеркала.
В общем случае полноповоротная зеркальная антенна состоит:
. зеркальная система, формирующая определенным образом радиолуч, (радиосигнал);
. опорно-поворотное устройство, обеспечивающее заданную пространственно-временную ориентацию радиолуча;
В свою очередь зеркальная система состоит из:
. зеркало;
. каркас;
. контррефлектор;
. опора контррефлектора;
. облучатель;
. подвеска облучателя.
Классификация антенных устройств может быть осуществлена по следующим признакам:
. Классификация по назначению. Антенные установки могут быть предназначены для радиолокации, радиоастрономических целей, связи и работы с искусственными спутниками и космическими станциями определенного класса орбит и траекторий.
. Классификация по количеству элементов. Здесь можно выделить одиночные, как правило, большие радиотелескопы и многоэлементные антенны с синтезированной апертурой, состоящие из нескольких антенн, сигналы от которых поступают в центральный пульт, который управляет синхронным перемещением антенн.
. Классификация по диапазону рабочих длин волн. Она определяет требования к точности геометрии отражающих поверхностей. Точность должна обеспечиваться на всех этапах разработки, изготовления, строительства, монтажа, юстировки и эксплуатации антенны.
. Классификация по форме поверхности и принципу оптического построения системы отражающих поверхностей, то есть по геометрии. Это однозеркальные и многозеркальные антенны с параболическими, сферическими и плоскими зеркалами.
. Классификация по форме диаграммы направленности. Это карандашный луч, ножевая (отражатель выполнен в виде параболического цилиндра), многолучевая, сканирующая и другие диаграммы направленности зеркальной системы.
. Классификация по типу наведения на объект. Здесь можно выделить управляемые антенны - полноповоротные по азимуту и углу наклона или с другим типом осей вращения антенны, имеющие определенную скорость перемещения и возможность обзора всей верхней полусферы. Другой тип - это антенны с ограниченным рабочим сектором, меридианные инструменты, пассивные стационарные неповоротные системы.
. Классификация по характеру размещения или базирования антенных установок или базирования антенных установок. Антенные