Регрессионный анализ

Курсовой проект - Математика и статистика

Другие курсовые по предмету Математика и статистика

?ым относительных значений пробы PWC170 более точен;
3) на графике линии уравнения регрессии расположены почти под прямым углом, так как значения коэффициента корреляции близки к нулю.[3]

 

 

 

 

 

Заключение

В исследуемой группе наблюдается недостоверная обратная взаимосвязь между данными относительных значений PWC170 и времени челночного бега 3х10 м, т.к. rху = -0,20 < rst = 0,55 для К= 11 при ?= 95%;
- относительная погрешность функции ух = 7,875 0,05х меньше (7,22%), а, следовательно, прогноз результата в челночном беге по данным относительных значений пробы PWC170 более точен;
- на графике линии уравнения регрессии расположены почти под прямым углом, так как значения коэффициента корреляции близки к нулю.

Также в работе показана корреляционная зависимость показателей 32 российских банков, проведен регрессионный анализ и нашли регрессионную модель данной взаимосвязи показателей. Задача регрессионного анализа состоит в построении модели, позволяющей по значениям независимых показателей получать оценки значений зависимой переменной. Регрессионный анализ является основным средством исследования зависимостей между социально-экономическими переменными. Эту задачу мы рассмотрим в рамках самой распространенной в статистических пакетах классической модели линейной регрессии. Специфика социологических исследований состоит в том, что очень часто необходимо изучать и предсказывать социальные события. Вторая часть данной главы будет посвящена регрессии, целью которой является построение моделей, предсказывающих вероятности событий. Величина называется ошибкой регрессии. Первые математические результаты, связанные с регрессионным анализом, сделаны в предположении, что регрессионная ошибка распределена нормально с параметрами, ошибка для различных объектов считаются независимыми. Кроме того, в данной модели мы рассматриваем переменные как неслучайные значения. Такое, на практике, получается, когда идет активный эксперимент, в котором задают значения (например, назначили зарплату работнику), а затем измеряют (оценили, какой стала производительность труда).

Полученное уравнение y=245,75+1,42х позволяет проиллюстрировать зависимость размера работающих активов банков от размера их капитала.

И так, с помощью корреляционно-регрессионного анализа, можно исследовать показатели банков.[8]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Использованная литература

  1. Аверкин А.Н., Батыршин И.З., Блишун А.Ф. и др. Нечеткие множества в моделях управления и искусственного интеллекта // Под ред. Д.А. Поспелова. М.: Наука, 1986. 312 с.
  2. Аветисян Д.О. Проблемы информационного поиска: (Эффективность, автоматическое кодирование, поисковые стратегии) - М.: Финансы и статистика, 1981. - 207 с.
  3. Айвазян С.А., Бежаева З.И., Староверов О.В. Классификация многомерных наблюдений. М.: Статистика, 1974. 240 с.
  4. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика. Основы моделирования и первичная обработка данных. Справочное издание. М.: Финансы и статистика, 1983. 472 с.
  5. Айвазян С.А., Енюков И.С., Мешалкин Л.Д. Прикладная статистика: Исследование зависимостей: Справочник. М.: Финансы и статистика, 1985. 182с.
  6. Айвазян С.А. , Мхитарян В.С. Прикладная статистика и основы эконометрики. М. Юнити, 1998. 1024 с.
  7. Ван дер Варден Б.Л. Математическая статистика. М.: Изд-во иностр. лит., 1960. 302 с.
  8. Гайдышев И.П. Анализ и обработка данных: специальный справочник. - СПб.: Питер, 2001. - 752 с.
  9. Гмурман В.С. Теория вероятностей и математическая статистика. М.: Высш. шк., 1972. 368 с.
  10. Калинина В.Н., Панкин В.Ф. Математическая статистика. М.: Высш. шк., 2001. 336 с.
  11. Кендалл М., Стьюарт А. Теория распределений. М.: Наука, 1966. 566 с.
  12. Кендалл М., Стьюарт А. Статистические выводы и связи. М .: Наука, 1973. 899 с.