Расчеты по гидравлике

Контрольная работа - Физика

Другие контрольные работы по предмету Физика

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Расчеты по гидравлике

 

Содержание

 

Задача 1

Задача 2

Задача 3

Задача 4

Задача 5

Используемая литература

 

Задача 1

 

Определите сжимающее усилие малого поршня и силу, которую необходимо приложить к свободному концу рычага гидравлического пресса, если диаметр большого поршня Д=300 мм, диаметр малого поршня d=30 мм, длина рычага до опоры L=1200 мм, расстояние от шарнира до опоры на малый поршень а=120 мм. Сжимающее усилие большого поршня FД = 190 кН.

 

Рисунок 1. Схема установки

 

Решение

Силу, которую необходимо приложить к свободному концу рычага гидравлического пресса определим из уравнения моментов относительно шарнира:

Да=FL

 

 

На большой поршень передалась сила FД , следовательно, изменение давления под большим поршнем составит:

 

где ?р - изменение давления, Аб - площадь поперечного сечения поршня.

Согласно закону Паскаля давление в жидкостях распространяется одинаково во всех направлениях, следовательно, сила давления на малый поршень будет равна:

 

 

Ответ: F=19 кН, Fм=1,9 кН

 

Задача 2

 

Определите напор насоса, если его объемная подача Qv=20л/с воды, показание вакуумметра Рвак=36 кПа, показание манометра Рман=0,4 МПа, расстояние между приборами z=400 мм, диаметры нагнетательного трубопровода dнг=250 мм, всасывающего dвс=300 мм

 

Рисунок 2. Схема насоса

Решение

Расход воды может быть найден по следующей формуле

 

 

 

 

Следовательно, напор насоса выведем следующим образом:

Ответ: напор насоса 44,86 м

 

Задача 3

 

Приведите схему радиально-поршневого насоса. Поясните устройство, принцип действия и способы изменения подачи насоса.

 

Рисунок 3. Схема радиально-поршневого насоса

 

Конструктивная схема радиально-поршневого насоса однократного действия показана на рис. 3. Статор (корпус) 1 эксцентричен относительно ротора 2. Ротор с поршнями (вытеснителями) 3 составляет блок цилиндров. Внутри вращающегося ротора расположены рабочие камеры 4, образованные поверхностями цилиндров и перемещающихся поршней. Оси цилиндров находятся в одной плоскости и пересекаются в одной точке, через которую проходит ось вращения ротора. Распределение жидкости осуществляется неподвижным цапфенным распределителем 5, в котором В - всасывающая и Н - напорная полости. Приводной вал 6 жестко связан с ротором.

При вращении ротора, например, по часовой стрелке, поршни совершают сложное движение - они вращаются вместе с ротором и движутся возвратно-поступательно относительно него. Поршни постоянно находятся в подвижном контакте с внутренней поверхностью статора под действием центробежных сил, сил давления жидкости (при наличии подпитки) или пружин.

Рабочие камеры поочередно соединяются с линиями всасывания и нагнетания с помощью цапфенного распределителя. В течение одной половины оборота происходит всасывание рабочей жидкости, в течение следующей половины оборота - нагнетание рабочей жидкости в напорную гидролинию.

Число поршней в радиальном насосе нечетное, оно равно 5, 7, 9 и реже 11. Это необходимо потому, что при нечетном числе поршней зону перехода от всасывания к нагнетанию одновременно проходит один поршень, а при четном числе - два, что увеличивает неравномерность подачи.

Для увеличения рабочего объема и улучшения равномерности подачи радиально-поршневые насосы делают иногда многорядными. Поршни располагают в цилиндрах в нескольких параллельных плоскостях, которых обычно не более трех.

Так как эксцентриситет определяет ход поршня, то изменяя е, регулируют рабочий объем, а следовательно, и подачу насоса. Если статор можно смещать в обе стороны от оси вращения ротора, то появляется возможность реверса направления потока рабочей жидкости. Роторные радиально-поршневые гидромашины используют главным образом в качестве насосов регулируемой производительности и гидромоторов с большим крутящим моментом. На мобильных машинах они применяются редко вследствие больших габаритов и массы, а чаще всего используются в стационарных условиях и там, где габариты и масса не имеют решающего значения. Конструкция распределительного узла ограничивает давление, развиваемое насосом (до 25 МПа). Полный КПД радиально-поршневых насосов находится в пределах 0,7...0,9.

Недостатками радиально-поршневых гидромашин являются также большой момент инерции ротора, относительная тихоходность из-за больших окружных скоростей головок поршней.

 

Задача 4

 

Опишите из каких элементов состоит основное и вспомогательное гидравлическое оборудование машины ЛП-19

Машина ЛП-19 состоит из трех основных частей: ходовой системы, поворотной платформы и стрелы с рабочим оборудованием.

Ходовая система - гусеничная, многоопорная, с балансирной подвеской состоит из сварной рамы, механизмов передвижения, гусеничных лент и натяжных устройств. Привод ходовой системы осуществляется от двух гидромоторов, входящих в состав двух механизмов передвижения. К сварной раме ходовой системы крепится опорно-поворотное устройство, через которое на ходовую систему опирается поворотная платформа.

На полноповоротной платформе размещены силовая установка, привод поворо