Расчет турбины турбореактивного двухконтурного двигателя на базе АЛтАУ31Ф

Дипломная работа - Разное

Другие дипломы по предмету Разное



Вµлая, охлаждаемая двуполостная. Каждая лопатка имеет перо, наружную и внутреннюю полки, образующие с пером и полками соседних лопаток проточную часть СА ТВД.

Ротор ТВД предназначен для преобразования энергии газового потока в механическую работу на валу ротора. Ротор состоит из диска, цапфы с лабиринтными и маслоуплотнительными кольцами. Диск имеет девяносто три паза для крепления рабочих лопаток ТВД в ёлочных замках, отверстия для призонных болтов стягивающих диск, цапфу и вал ТВД, а также наклонные отверстия для подвода охлаждающего воздуха к рабочим лопаткам.

Рабочая лопатка ТВД - литая, полая, охлаждаемая. Во внутренней полости лопатки для организации процесса охлаждения имеются продольная перегородка, турбулизирующие штырьки и рёбра. Хвостовик лопатки имеет удлинённую ножку и замок ёлочного типа. В хвостовике имеются каналы для подвода охлаждающего воздуха к перу лопатки, а в выходной кромке - щель для выхода воздуха.

В хвостовике цапфы размещены масляное уплотнение и обойма радиального роликового подшипника задней опоры ротора высокого давления.

Турбина низкого давления

СА ТНД состоит из обода, блоков сопловых лопаток, внутреннего кольца, диафрагмы, сотовых вставок.

Обод имеет фланец для соединения с корпусом ВВТ и наружным кольцом ТВД, а также фланец для соединения с корпусом опоры турбины.

СА ТНД имеет пятьдесят одну лопатку спаянные в двенадцать четырёхлопаточные блоки и один трёхлопаточный блок. Сопловая лопатка - литая, полая, охлаждаемая. Перо, наружная и внутренняя полки образуют с пером и полками соседних лопаток проточную часть СА.

Во внутренней части полости пера лопатки размещён перфорированный дефлектор. На внутренней поверхности пера имеется поперечные рёбра и турбулизирующие штырьки.

Диафрагма предназначена для разделения полостей между рабочими колёсами ТВД и ТНД.

Ротор ТНД состоит из диска с рабочими лопатками, цапфы, вала и напорного диска.

Диск ТНД имеет пятьдесят девять паза для крепления рабочих лопаток и наклонные отверстия для подвода охлаждающего воздуха к ним.

Рабочая лопатка ТНД - литая, полая, охлаждаемая. На периферийной части лопатка имеет бандажную полку с гребешком лабиринтного уплотнения, обеспечивающим уплотнение радиального зазора между статором и ротором.

От осевых перемещений в диске лопатки зафиксированы разрезным кольцом со вставкой, которая, в свою очередь, зафиксирована штифтом на ободе диска.

Цапфа имеет в передней части внутренние шлицы, для передачи крутящего момента на вал ТНД. На наружной поверхности передней части цапфы установлена внутренняя обойма роликового подшипника задней опоры ТВД, лабиринт и набор уплотнительных колец, образующей вместе с крышкой, установленной в цапфе, переднее уплотнение масляной полости опоры ТВД.

На цилиндрическом поясе в задней части установлен набор уплотнительных колец, образующих вместе с крышкой уплотнение масляной полости опоры ТНД.

Вал ТНД состоит из трёх частей. Соединение частей вала между собой - вильчатое. Крутящий момент в местах соединения передаётся радиальными штифтами. В задней части вала имеется откачивающий маслонасос опоры турбины.

В передней части ТНД имеются шлицы, передающие крутящий момент на ротор компрессора низкого давления через рессору.

Напорный диск предназначен для создания дополнительного подпора и обеспечивает увеличение давление охлаждающего воздуха на входе в рабочие лопатки ТНД.

Опора турбины включает в себя корпус опоры и корпус подшипника. Корпус опоры состоит из наружного корпуса и внутреннего кольца, соединённых силовыми стойками и образующие силовую схему опоры турбины. В состав опоры входят также экран с обтекателями, пеногасящая сетка и крепёжные детали. Внутри стоек размещены трубопроводы подвода и откачки масла, суфлирования масляных полостей и слива масла. Через полости стоек подводится воздух на охлаждение ТНД и отводится воздух из предмасляной полости опоры. Стойки закрыты обтекателями. На корпусе подшипника установленымаслооткачивающий насос и масляный коллектор. Между наружной обоймой роликоподшипника ротора ТНД и корпусом подшипника размещён упруго-масляный демпфер.

На опоре турбины закреплён конус-обтекатель, профиль которого обеспечивает вход газа в форсажную камеру сгорания с минимальными потерями.

2.2 расчет на статическую прочность рабочей лопатки первой ступени турбины высокого давления

Расчет на прочность пера лопатки будем проводить с помощью методики указанной в пособии [5].

Рабочие лопатки осевой турбины являются весьма ответственными деталями газотурбинного двигателя, от надежной работы которых зависит надежность работы двигателя в целом.

При работе авиационного ГТД на рабочие лопатки действуют статические, динамические и температурные нагрузки, вызывая сложную картину напряжений.

Расчет на прочность пера лопатки проводим только от действия статических нагрузок. К ним относятся:

центробежные силы масс лопаток, которые появляются при вращении ротора;

газовые силы, возникшие при обтекании газом профиля пера лопатки и в связи с наличием разности давлений газа перед и за лопаткой.

Центробежные силы вызывают деформации растяжения, изгиба и кручения, газовые - деформации изгиба и кручения.

Напряжения кручения от центробежных и газовых сил слабозакрученных рабочих лопаток малы, и ими обычно пренебрегают.

Напряжения растяжения от центробежных сил я