Распростарнение радиоволн
Методическое пособие - Радиоэлектроника
Другие методички по предмету Радиоэлектроника
Рис 2.3. Расстояние прямой видимости
без учёта и с учётом рефракции
2.4. Классификация случаев распространения земных радиоволн
При расчете напряженности поля земных радиоволн атмосферу принимают за среду без потерь с ?=1, а необходимые поправки, учитывающие влияние атмосферы, вводят дополнительно.
Влияние земной поверхности на условия распространения радиоволн можно свести к двум случаям: первый излучатель или приемная антенна подняты высоко (в масштабе длины волны) над поверхностью Земли, второй - передающая и приемная антенны находятся в непосредственной близости от Земли.
В первом случае, типичном для ультракоротких и частично коротких радиоволн, метод расчета напряженности поля зависит от протяженности радиолинии по сравнению с расстоянием прямой видимости (рис.2.3), вычисляемым по формуле
(2.11)
где = 6,37106 м радиус Земли; и высоты подъема антенн, м.
При протяженности радиолинии 0,8 расчет напряженности поля ведется с учетом дифракции радиоволн.
Во втором случае, относящемся главным образом к средним и длинным волнам, при протяженности радиолинии не более: 300-400 км (для ?, 200-20000 м); 50-100 км (для ?, 50-200 м); 10 км (для ?, 10-50 м) земную поверхность считают плоской. На радиолиниях большей протяженности расчет напряженности поля ведется с учетом дифракции.
2.5. Поле излучателя, поднятого над плоской земной поверхностью
В этом случае волна достигает земной поверхности на значительном (в масштабе длины волны) расстоянии от излучателя и участок фронта волны вблизи земной поверхности можно считать плоским. На радиолинии малой протяженности < 0,2 o поле в месте приема является результатом интерференции полей прямой волны и волны, отраженной от плоской земной поверхности (рис.2.4), причем напряженность электрического поля отраженной волны определяется при помощи коэффициентов отражения Френеля. Прямая волна распространяется по пути АВ, отраженная по пути АСВ, а линия АО есть направление максимального излучения передающей антенны. Результирующее поле определяется интерференционной формулой
,(2.12)
где определяется из (1.1),
Углы ?1 и ?2 обозначены на рис. 2.4. Корень из трехчлена в этой формуле называют интерференционным множителем.
Коэффициент отражения от земной поверхности Гв.г определяют для соответствующей поляризации по формулам (2.7),(2.8). Для слабо направленных антенн из-за того, что в широком интервале углов D(?2)/D(?1) 1, интерференционная формула упрощается:
(2.13)
Присутствие земной поверхности изменяет распределение поля излучателя в вертикальной плоскости. Диаграмма направленности системы излучатель Земля изрезана многими лепестками, а диаграмма направленности самого излучателя F(?) представляет огибающую этих лепестков. На рис.2.5 представлены результирующие диаграммы направленности систем вертикальный вибратор Земля (а) и горизонтальный вибратор Земля (б), когда излучатель поднят на высоту над почвой, принимаемой за идеальный диэлектрик.
Для практически важного случая распространения радиоволн скользящими лучами (? стремится к 900 ) формула (2.12) может быть подвергнута дальнейшему упрощению. Учитывая, что при этом |Гв.г| 1, Фв.г (рис. 2.1), напряженность поля Em (В/м) в зависимости от
Рис. 2.4. Распространение волн при поднятых антеннах
Рис. 2.5. Диаграммы направленности антенн, поднятых над поверхностью Земли
расстояния r (м), длины волны (м), высоты расположения антенн , (м) и мощности Р (Вт) определяют по формуле предложенной Б.А. Введенским:
(2.14)
Если
то расчет по приведенной формуле дает хорошее совпадение с результатами измерения.
2.6. Поле излучателя, расположенного вблизи плоской земной
поверхности
Действие на вертикальный вибратор идеально проводящей поверхности можно заменить действием фиктивного вибратора той же длины, расположенного симметрично основному вибратору относительно поверхности (рис. 2.6). Тогда электрическое поле в дальней зоне непосредственно на поверхности определяется формулой
где действующая длина реального вибратора.
Диаграмма направленности такой антенны имеет максимум излучения вдоль поверхности. Согласно граничным условиям вектор направлен нормально к поверхности, а следовательно, вектор распространения энергии направлен параллельно поверхности. Условия, близкие к рассмотренным наблюдаются на практике при распространении длинных волн над морской поверхностью.
Когда источником ?/p>