3D-телевидение
Информация - Компьютеры, программирование
Другие материалы по предмету Компьютеры, программирование
?имые" 120-герцовые ЖК-мониторы.
Конечно, уменьшенное время открывания шторок не прошло бесследно: утомляемость глаз по-прежнему высока и, в общем-то, больше, чем на хорошем ЭЛТ-мониторе со старым контроллером. Кроме того, используемые приемы позволяют лишь частично решить проблемы медленных пикселей. При недостаточной калибровке задержек или отклонений в конкретном экземпляре монитора часть пикселей не будет успевать переключить цвет, и возникнет "гхостинг" (взаимопроникновение ракурсов).
4. Средства "виртуальной реальности"
На протяжении человеческой истории постоянно существовала мечта об альтернативной реальности, в которую можно как-то попасть. С развитием вычислительной техники появились так называемые "виртуальные реальности". В качестве виртуальной реальности выступает максимально приближенная к реальности графика в совокупности со всевозможными средствами ее визуализации: костюмами, шлемами и прочими аксессуарами. Все они так или иначе воздействуют на органы чувств человека с целью максимального приближения его ощущений к реальным. Человек должен ощущать себя как бы внутри компьютерного мира.
По мере развития и совершенствования компьютерных систем становится' все труднее отделять друг от друга "синтетическое" и "натуральное", например, трехмерные компьютерные персонажи "играют" в кино наравне с реальными. Виртуальная реальность получила широкое распространение в компьютерных играх, распределенных конференциях, телемедицине и т.п. Для взаимодействия с системами виртуальной реальности необходимы средства ввода и вывода информации.
В настоящее время средства вывода воздействуют в основном на глаза и уши человека. Человеческому мозгу для создания объемного представления об окружающей его пространственной среде требуются два ракурса для двух глаз (левый и правый). Информация, получаемая обоими глазами, обрабатывается мозгом и сливается в одно трехмерное изображение. Существует несколько способов подать информацию нашему мозгу так, чтобы он воспринимал обычную плоскую картинку (на экране монитора) как трехмерную. Например, пространственное изображение можно создать игрой света и теней или особым расположением элементов сцены. Но в телевидении и в компьютерных устройствах обычно используется иной принцип. Достаточно просто показать каждому глазу специальным образом подготовленное именно для него изображение. Мозг анализирует полученную информацию и "обманывается", создавая у человека впечатление объемности увиденного.
Одним из таких средств визуализации является виртуальный шлем (рис.18).
Этот тип устройств уже довольно распространен. VR-шлемы относят к классу HDM (Head Mounted Display), т.е. устройства, одеваемые на голову.
Рис. 18
В них применяется двухэкранный способ формирования изображения, т.е. для каждого глаза в шлем встроен отдельный дисплей (рис.19). При этом каждый глаз видит только свой кадр стереопары. Различного рода ошибки практически исключены, что усиливает эффект погружения в виртуальный мир. Первые виртуальные шлемы появились в 1996 г. Конечно, они были несовершенны с точки зрения гигиены и качества. Позднее появились улучшенные модификации. Они были снабжены жидкокристаллическими дисплеями.
Рис. 19
В шлемах виртуальной реальности применяется технология Virtual Orientation System - система виртуальной ориентации. Эта система отслеживает движения головы человека при помощи специальных датчиков, которые либо встроены в шлем, либо прикрепляются к голове отдельно и, в соответствии с их данными, корректирует изображение на ЖК-дисплеях. Именно благодаря наличию этой технологии шлем является не просто устройством отображения трехмерных изображений, а создает эффект полного присутствия в виртуальном мире. Кроме того, в любой шлем встраиваются наушники, которые воспроизводят объемный звук.
Одним из пионеров данной области стала компания IIS (Interactive Imaging Systems). Ее первый продукт (шлем виртуальной реальности VFX1) вышел на рынок более 5 лет назад и, хотя не получил большого распространения, но, тем не менее, стал значимой вехой развития бытовых устройств виртуальной реальности. До этого область виртуальных технологий являлась в основном прерогативой военных. Там уже давно существуют и успешно используются варианты шлемов виртуальной реальности для пилотов вертолетов и некоторых военных тренажеров.
Результатом эволюции шлема VFX1 является VFX3D (рис.20).
Основные характеристики VFX3D
Два ЖКД с диагональю, " 0,7 (17,78 мм)
Разрешение каждого, пикселей 360000
Цвет, бит 16
Угол обзора, град. 35
Фиксированный фокус, м 3,63
Система ориентации (VOS) 3 сенсора:
поворот головы вправо/влево (Yaw), град. 360
чувствительность, град. 0,1 (12 бит)
наклон головы вверх/вниз (Pitch), град. 70
чувствительность, град. 0,1 (12 бит)
наклон головы вправо/влево (Roll), град. 70
чувствительность, град. 0,1 (12 бит)
Диапазон воспроизводимых звуковых частот 20.. .20000 Гц
Рис. 20
Работает шлем достаточно просто. Вы подключаете его к компьютеру и получаете изображение, которое в данный момент существует на дисплее. Для более "продвинутых" режимов, скажем, просмотра стерео или трекинга в виртуальном мире, необходимо иметь соответствующее программное обеспечение, которое позволит вам использовать эти возможности шлема. В комплект поставки входят шлем, коробочка "LinkBox", к которой непо