Разработка комплекса мероприятий по обеспечению противопожарной защиты газоперерабатывающего предприятия в городе Уфа

Дипломная работа - Безопасность жизнедеятельности

Другие дипломы по предмету Безопасность жизнедеятельности



ам на относительно большие расстояния и под давлением выше 0,7 МПа практически невозможно, так как водяные пары и тяжелые углеводороды при понижении температуры конденсируются, образуя жидкостные, ледяные и гидратные пробки, поэтому нефтяной газ подвергается переработке на газоперерабатывающих заводах [3].

При больших масштабах производства и переработки углеводородного сырья возрастают вероятность и степень опасности взрывов и пожаров. Размеры ежегодного материального ущерба от пожаров и взрывов во всех технически развитых странах имеют тенденцию к неуклонному росту. При этом увеличиваются размеры материального ущерба от каждого отдельного случая взрыва или пожара, так как с непрерывным ростом масштабов производства увеличиваются единичная мощность установок и концентрация на производственных площадях горючих и взрывоопасных продуктов и, прежде всего, сжиженных углеводородных газов. Наибольшее число крупных пожаров и взрывов на складах и открытых площадках обусловлено утечкой ЛВЖ и сжиженных углеводородных газов. Для выявления причин аварий на предприятиях газоперерабатывающей отрасли необходимо рассмотреть физико-химические свойства газа, особенности технологических процессов, статистику характерных чрезвычайных ситуаций в России и в мире [4].

.2 Физико-химические свойства сжиженных углеводородных газов, обуславливающие возникновение аварии

Давление паровой фазы. Пары сжиженных углеводородных газов обладают значительной упругостью (давлением), которая возрастает с повышением температуры. Для жидкой фазы углеводородов характерен высокий коэффициент объемного расширения, она может охлаждаться до отрицательных температур. Паровая фаза имеет плотность, значительно превышающую плотность воздуха, обладает медленной диффузией, способна накапливаться в низких местах и колодцах, особенно при отрицательных температурах воздуха, в отличие от других газов имеет низкую температуру воспламенения и низкие значения пределов взрываемости (воспламеняемости) в воздухе, способна образовывать конденсат при низких температурах воздуха или при повышении давления.

Сжиженные углеводородные газы в закрытых сосудах и газопроводах находятся под давлением, которое соответствует упругости их паров при данной температуре. Давление в сосудах изменяется пропорционально температуре [5].

Обеспечение герметичности сосудов, газопроводов, запорной и регулирующей арматуры, а также их соединений является условием полной безопасности и безаварийности при хранении, розливе и транспортировке сжиженных газов. При заполнении сосудов сжиженными газами сверхдопустимого возможно повышение давления, приводящее к аварии, поэтому резервуары и баллоны полностью не заполняют, а оставляют некоторый объем, занимаемый парами сжиженных газов. Степень заполнения резервуаров и баллонов принимается в зависимости от марки газа, разности его температур во время заполнения и при последующем хранении. При разности температуры до 40С степень заполнения принимается 85%, а при большей разности она должна соответственно снижаться [5].

Конденсатообразование. Нагрев жидкой фазы вызывает ее испарение, увеличение массы насыщенных паров при одновременном повышении их температуры и давления (упругости). При охлаждении паровой фазы возникает обратный процесс - конденсатообразование. В связи с периодическими понижениями и повышениями температуры окружающей среды (воздуха, земли) в течение суток и года, а также в результате отбора паровой фазы в резервуарах и баллонах, заполненных сжиженными углеводородными газами, непрерывно происходит процесс тепломассообмена между жидкой и паровой фазами. Он более интенсивен, если жидкая и паровая фазы находятся в различных температурных условиях (например, подземные резервуары групповых установок в зимнее время находятся в зоне более высоких температур, чем выходящие из земли газопроводы). В установках сжиженного газа, смонтированных без учета процесса конденсатообразования в паровой фазе, газоснабжение нарушается и возникают аварии [5].

Для предупреждения указанных нарушений необходимо резервуары и трубопроводы насыщенных паров располагать в зоне одинаковых температур, предусматривать возможность беспрепятственного стока конденсата из газопроводов обратно в резервуар. Значительную опасность представляет конденсат, образующийся в трубопроводах паровой фазы перед компрессорами, Для предотвращения попадания конденсата в компрессоры предусматривается обязательная установка конденсатоотводчиков на всасывающих трубопроводах смеси углеводородов. Насыщенные пары конденсируются при понижении температуры или повышении давления, поэтому они не могут транспортироваться по трубопроводам без постоянного отвода конденсата или дополнительного подогрева.

Для предотвращения конденсатообразования входы в здания должны быть наружными, цокольными, утепленными. Подземные газопроводы от резервуарных установок с искусственным испарением, оборудованные нагревателями-регазификаторами, необходимо прокладывать ниже глубины промерзания или с тепловым спутником, обеспечивающим положительную температуру сжиженного газа [5].

Охлаждающее действие сжиженных газов. В зимнее время сжиженные углеводороды могут охлаждаться до температур ниже точки кипения и сохранять при этом свойства жидкости. Это объясняется тем, что пропан отвердевает при -189С, а н-бутан при -135С. Переохлажденные жидк