Развитие понятия "Пространство" и неевклидова геометрия

Дипломная работа - Математика и статистика

Другие дипломы по предмету Математика и статистика

 

(3.11)

 

определяющих вращение, величина не обращается в нуль. В самом деле, предположим, что в (3.11) коэффициент равняется нулю. В таком случае пространственный вектор {1, 0} при вращении (3.11), перешел бы в вектор {0, }, который является временным, что невозможно. Таким образом, при изменениях координатных векторов , вызываемых непрерывными вращениями, коэффициент будет знакопостоянным.

Следовательно, все движения делятся на четыре типа в зависимости от значения определителя преобразования = 1 или = - 1 и знака > 0 или < 0.

Представителями этих четырех типов будут, например, движения с матрицами:

 

Псевдоевклидово трехмерное пространство

а) обобщим построения псевдоевклидовой плоскости на трехмерные пространства. Аксиомы псевдоевклидова трехмерного пространства совпадают с аксиомами Вейля псевдоевклидовой плоскости, за исключением аксиом размерности III. Теперь в аксиоме III-I речь идет о существовании трех линейно независимых векторов, а в аксиоме III, 2 - всякие четыре вектора линейно зависимы.

Скалярное произведение двух векторов , в псевдоевклидовом пространстве будем обозначать, как и в случае псевдоевклидовой плоскости, символом . Векторы , - перпендикулярны, если их скалярное произведение равно нулю.

Число называется скалярным квадратом вектора. Длиной вектора называется корень квадратный из скалярного квадрата этого вектора и обозначается через :

 

.

 

Подкоренное выражение может быть >0, <0, и = 0. Длины векторов соответственно этим случаям будут вещественные, чисто мнимые и нулевые. Векторы вещественной длины называются также пространственными, векторы чисто мнимой длины временными и векторы нулевой длины изотропными.

В псевдоевклидовом пространстве вводится прямоугольная система координат. По определению так называется аффинная система координат, векторы которой единичны или мнимоединичны и взаимно перпендикулярны. Будем рассматривать так называемое пространство Минковского, в котором из трех координатных векторов прямоугольной системы координат два единичные, а третий мнимоединичный. Будем считать, что

 

(3.12)

 

В этой системе координат скалярное произведение двух векторов и квадрат длины вектора , очевидно, вычисляются по формулам вида

 

 

И квадрат длины вектора , очевидно, вычисляются по формулам вида

 

, (3.13)

. (3.14)

 

За расстояние между двумя точками М(x1, x2, x3) и N(y1, y2, y3) по определению принимается длина вектора , т. е.

 

. (3.15)

 

Величиной угла между векторами и называется число, определенное по формуле

 

.

 

Если векторы , одной природы, т. е. оба пространственные или временные, то . Более того, , если для х, у выполняется неравенство Коши и , если неравенство это не выполняется. Полагая в последнем случае , получим .

б) В псевдоевклидовом пространстве существует три типа прямых в зависимости от природы ее направляющего вектора. Здесь существуют также три вида плоскостей в зависимости от природы ее нормального вектора.

в) Подробнее рассмотрим вопрос о сферах. Сферой псевдоевклидова пространства П3 называется множество точек этого пространства, отстоящих от данной точки А, называемой центром сферы, на одно и то же расстояние r. Величина r называется радиусом сферы.

Выбирая прямоугольную систему координат с началом в центре сферы, убедимся в том, что координаты х1, х2, х3 текущей точки сферы радиуса r удовлетворяют уравнению

 

. (3.17)

 

Ясно, что первые два координатных вектора прямоугольной системы здесь предполагаются единичными, а третий вектор мнимоединичным.

В псевдоевклидовом пространстве существуют три типа сферы вещественного, чисто мнимого и нулевого радиуса.

Уравнение сферы вещественного радиуса r совпадает (3.17), в котором величина r вещественная. Если сфера чисто мнимого радиуса r = ki, где k вещественное, то уравнение (3.17) приводится к виду

 

(3.17)

 

Если же сфера будет нулевого радиуса, то из (3.15) следует, что

 

. (3.18)

 

Уравнение (3.18) в евклидовом пространстве является уравнением конуса, а предыдущие два - уравнениями гиперболоидов.

Ясно, что конус (3,18) состоит из асимптот сфер (3.17, 17), имеющих центр в начале координат. Очевидно, асимптотический конус сферы совпадает с изотропным конусом ее центра. Из уравнения (3.15) следует также, что на сферах псевдоевклидова пространства имеются прямолинейные образующие - прямые целиком лежащие на сфере.

Очевидно, линией пересечения сферы с плоскостью является
окружность. Если секущая плоскость проходит через начало
Координат, то радиус окружности принимает значение, равное
радиусу сферы. Получаемые таким образом окружности сферы называются большими окружностями.

За сферическое расстояние между двумя точками М (), N () сферы принимаем расстояние по большой окружности, соединяющей данные точки. Очевидно, это расстояние равняется произведению радиуса сферы на значение угла, образованного радиусами векторами ,. Следовательно, сферическое расстояние определяется по формуле

 

. (3.19)

 

Если сфера чисто мнимого радиуса r = ki, то формула (3.19) пр?/p>