Развитие логического мышления у учащихся первого класса посредством решения задач по системе Л.В. Занкова
Информация - Педагогика
Другие материалы по предмету Педагогика
мости от того или иного вопроса следует решать задачу. [1]
Можно применить другой прием, а именно - предложить поставить вопрос к прочитанному условию так, чтобы задача решалась одним действием или двумя действиями. В этих целях может быть использовано, например, такое условие задачи: В одном аквариуме 12 рыбок, а в другом на 3 рыбки больше.
В начальных классах обычно широко практикуется составление школьниками задач. Встречается и такое мнение, согласно которому составление задач учащимися считают чуть ли не главным средством формирования осмысленного отношения школьника к задаче. Л. В. Занков же не согласен с этим суждением. Он считает, что в 1 классе не следует практиковать составление задач детьми. Если дети составляют задачи, следуя указаниями учителя, это не имеет сколько-нибудь существенной ценности, поскольку не дает простору мысли ребят. Когда ученики составляют задачи самостоятельно, эти задачи неизбежно очень примитивны, а нередко и нелепы. Ведь процесс придумывания задачи учеником, по сути дела, таков: школьник исходит из числового равенства (скажем 9 - 5 = 4) и из хорошо знакомой задачи и присочиняет тот или иной случай, соответствующих данному равенству. Получается новая задача: Миша встретил в лесу 9 медведей. Пять медведей он убил. Сколько осталось? Помимо фактической бессмыслицы, часто возникающей, когда дети составляют задачи, отрицательные последствия таких занятий заключаются еще и в том, что они противодействуют созданию установки на распутывание клубка при решении задачи, которая так нужна и так ценна. Неудачи в обучении решению задач проистекают, по-видимому, из того, что дети не осмысливают способа решения задачи в его связи с жизненной ситуацией, которая изображена в задаче. [1]
В том случае, когда разбор задачи не помогает, можно наглядно представить её содержание в виде инсценировки, использовать картинки и т.п. Однако задерживаться на этих приемах не следует. Самое главное - осмысление текста задачи и способа её решения путем сопоставления с другой задачей. Когда будет накоплен значительный опыт в сопоставлении и решении разнообразных задач, дети смогут самостоятельно группировать задачи по общности приемов их решения. Это будет закономерным итогом содержательной мыслительной деятельности.
.Решение простых и составных задач
Следующий важный вопрос касается решения простых и составных задач. С математической точки зрения простой называют задачу, которая решается одним действием. Всякая числовая задача, разрешимая не одним действием. Всякая числовая задача, разрешимая не одним, а несколькими действиями, в соответствующем порядке их следования, называется составной задачей.
Наличие этого разделения вовсе не означает, что оно может быть прямо перенесено в методику обучения решению задач. Здесь должен быть выработан педагогически целесообразный путь, способствующий оптимальной эффективности методических приемов для общего и математического развития школьников.
Когда ребята освоились с зависимостью между данными задачи и искомым и могут осмысленно найти способ решения, можно перейти к задачам в два действия. И здесь надо применить сопоставление. Например, задача в одно действие: Ира купила сначала 6 тетрадей, а затем ещё 2. Сколько всего тетрадей купила Ира? Дети решают задачу. Затем включается задача в два действия. Учительница записывает на доске:
Вот мы решили первую задачу и узнали, что Ира купила всего 8 тетрадей. Как же мы будем решать вторую задачу? Что в ней спрашивается? [Сколько тетрадей осталось у Иры?]
А почему спрашивается, сколько тетрадей осталось у Иры? [Потому что она 3 тетради дала брату]. Можно ли узнать сколько тетрадей осталось у Иры, если мы не знаем, если мы не знаем сколько всего тетрадей она купила? [Нет, нельзя.] А как узнать, сколько всего тетрадей она купила? [Надо сложить 6 тетрадей и 2 тетради, потому что Ира купила сначала 6 тетрадей, а потом - еще 2 тетради]. Складываем. Сколько получилось? [8 тетрадей.] Значит, Ира купила всего 8 тетрадей. Из этих 8 тетрадей 3 тетради Ира дала брату. Как же узнать, сколько тетрадей осталось у Иры, если она купила всего 8 тетрадей, а брату дала 3 тетради? [Надо из 8 тетради вычесть 3 тетради. Получится 5 тетрадей. Значит, у Иры осталось 5 тетрадей.] Учительница записывает ход решения на доске в правом столбце.
Тогда на доске появляется такая запись решения первой и второй задачи:
Чем же отличается друг от друга первая и вторая задачи? Первая решается одним действием, вторая - двумя действиями. Когда решаем первую, мы сразу сможем ответить на вопрос задачи. Когда решаем первую, мы сразу можем ответить на вопрос задачи. Когда решаем вторую задачу, сразу на вопрос задачи ответить не можем. Поэтому первая задача решается одним действием, вторая - двумя. [1]
Л.В. Занков считает полезным, кроме того, сопоставление таких задач, которые отличаются главным образом тем, какая жизненная ситуация отражена в каждой из них. Если при этом в задачах фигурируют одни и те же лица, одни и те же действия, одни и те же объекты, тогда зависимость хода решения задачи от своеобразия приведенной в ней жизненной ситуации выступает наиболее выпукло. Вот три задачи, которые могут служить материалом для сопоставления.
Задача 1. Мальчик выстругал несколько палочек. Три палочки он отдал сестре, и тогда у него осталось 15. Сколько палочек выстругал мальчик?
Задача 2. Мальчик выстругал 7 палочек,