Процессорный модуль

Дипломная работа - Компьютеры, программирование

Другие дипломы по предмету Компьютеры, программирование



Введение

Процессорный модуль представляет собой функционально законченное устройство со встроенной функцией отладки целевого программного обеспечения. Он содержит разъемы, на которые выведены все контакты микропроцессора. Процессорный модуль обеспечивает корректный старт и инициализацию микропроцессора после аппаратного сброса. Он может функционировать под управлением инструментального компьютера или без него. Взаимодействие инструментального компьютера и процессорного модуля осуществляется посредством отладочного интерфейса.

Модуль не содержит ничего необычного для микропроцессорной системы и использует только те свойства микропроцессора, которые являются общими для большинства из них. Благодаря этому достигается независимость структуры модуля от выбора микропроцессора. Разработчику предлагается строить целевую микропроцессорную систему на основе процессорного модуля со встроенными функциями отладки и начальной загрузки.

Метод проектирования микропроцессорной системы с использованием отладочного процессорного модуля позволяет ускорить и удешевить процесс разработки целевой системы. Использование метода позволяет обойтись без затрат связанных с приобретением внутрисхемного эмулятора, эмулятора ПЗУ и программной модели микропроцессора, упростить технологию разработки и отладки частей целевой системы связанных непосредственно с микропроцессором. Пользователь приобретает сразу часть целевой системы со встроенными функциями отладки и диагностики.

В процессе выполнения данного курсового проекта будет осуществлено проектирование процессорного модуля - независимого устройства, которое может выполнять два заданных действия над операндами. Результатом проекта будет схема устройства, отвечающего требованиям к системам обработки информации.

1. Анализ задания

процессорный модуль обработка информация

Электронная система, реализующая сложный алгоритм обработки данных, может быть условно разделена на две функционально связанные подсистемы - управляющий и операционный автомат. Взаимодействие двух этих подсистем приведено на рис. 1.1.

Рисунок 1.1 - Декомпозиция электронной системы на операционный и управляющий автомат

Управляющий автомат определяет порядок реализации вычислительных операций и отображает граф-схему функционирования электронной системы. Входной информацией для управляющего автомата является множество осведомительных сигналов {X} и множество внешних флагов ветвления {F}, результатом функционирования - множество признаков выполняемых микроопераций {Y}.

Операционный автомат осуществляют вычислительные действия над операндами. Структурно операционный автомат состоит из элементов памяти (регистров), осуществляющих хранение значений операндов, и комбинационных схем, отвечающих за выполнение микроопераций. Входной информацией для операционного автомата являются линии данных {D} и множество выполняемых в данном такте микроопераций {Y}, выходами являются линии результата {R} и выработанные признаки результата {X}, используемые в управляющем автомате.

Согласно полученного задания необходимо реализовать процессорный модуль, выполняющий алгоритмы следующих действий: умножение целых двоичных беззнаковых чисел, начиная с младших разрядов множителя, преобразование двоично-десятичного числа в двоичное.

На рисунках 1.2 и 1.3 приведены ГСА действий, которые должен выполнять проектируемый процессорный модуль.

Рисунок 1.2 - Умножение целых двоичных беззнаковых чисел, начиная с младших разрядов множителя

Рисунок 1.3 - Умножение целых двоичных беззнаковых чисел, начиная со старших разрядов множителя

Для выполнения поставленной задачи необходимо объединить две ГСА, т. к. проектируемый процессорный модуль должен выполнять две операции. Для выбора одной из операций в объединенную ГСА, которая изображена на рисунке 1.4 добавлена условная вершина, проверяющего состояние регистра COP (code of operation). Данные в СОР являются, как и операнды, входной информацией для проектируемого процессорного модуля.

В объединенной ГСА относительно исходных алгоритмов была изменена операция обнуления регистра С. Обнуление младших восьми разрядов регистра было изменено на обнуление всех разрядов, т. к. это при проектировании управляющего автомата позволит сократить количество признаков выполняемых микроопераций {Y}. С той же целью была создана общая для обеих ГСА вершина вывода результата.

Таким образом, при проектировании процессорного модуля необходимо использовать объединенную ГСА, описывающую алгоритмы выполнения предусмотренных действий. Процессорный модуль будет логически разбит на две подсистемы - ОА и УА, которые будут проектироваться как независимые устройства.

Рисунок 1.4 - Общая ГСА

2. Проектирование операционного автомата

.1 Общие вопросы функционирования операционных атоматов

Функции ОА сводятся к вводу-выводу и хранению слов информации, выполнению микроопераций и вычислению логических условий. Чтобы реализовать эти действия, необходим набор элементов, достаточный для построения структур с заданными функциями. Такой набор элементов называется структурным базисом ОА.

Основными операционными элементами, используемыми в ОА, являются:

управляемые шины, обеспечивающие передачу информации;

регистры;

комбинационные