Производство черных и цветных металлов

Дипломная работа - Разное

Другие дипломы по предмету Разное



о "родственников", и каждый занят своим особым делом. Познакомимся с ними на примере токарного станка. Для этого более подробно разберем его устройство.

Основанием станка служит станина. Обрабатываемое изделие зажимают либо между центрами передней и задней бабок (два приспособления, установленных по концам станины), либо в патроне, который навертывается на шпиндель (вал) передней бабки. Резец укрепляют в суппорте. В передней бабке находится коробка скоростей, напоминающая автомобильную. С ее помощью изделию придают нужную скорость вращения.

Заготовка обычно неподвижна, а сверло и вращается, и движется поступательно, углубляясь в металл. С помощью коробки скоростей токарного станка изделию, закрепленному в патроне, который навертывается на шпиндель (вал) передней бабки, придают нужную скорость вращения.

На станке есть еще ходовой валик. Он получает вращение от коробки скоростей через коробку передач и вызывает перемещение суппорта, а вместе с ним и резца. Если помимо ходового валика устанавливают ходовой винт, то станок превращается в токарно-винторезный - он может нарезать резьбу.

Вот мы и познакомились с первым "родственником" токарного станка. А вот еще один - токарно-револъверный. У него вместо задней бабки установлена револьверная (поворотная) головка. В гнезда револьверной головки (обычно их 6) вставляют различные инструменты. С их помощью на станке, не прекращая вращения шпинделя, выполняют различные операции.

Для токарной обработки коротких изделий больших диаметров применяют лоботокарный и карусельпо-токарный станки. Существует еще много разновидностей токарных станков. Столь же богаты различными "талантами" и другие типы металлорежущих станков - сверлильные, фрезерные, шлифовальные.

Основное, над чем работали и работают конструкторы, совершенствуя обработку резанием,- это повышение производительности обработки.

Изобретатели неустанно ищут материалы, повышающие стойкость инструмента. Раньше его изготовляли из обычных углеродистых сталей несложного химического состава. Потом появились более прочные стали, содержащие значительное количество вольфрама. Затем были созданы так называемые твердые сплавы (они сохраняют свою твердость при нагреве до 1000 С). В последние же годы начали делать металлокерамические инструменты с еще большей теплостойкостью.

Но это лишь один из путей. Другой - усовершенствование конструкции инструмента. Фреза, например, может выполнять такую же работу, что и резец при строгании. Но она многорезцовый инструмент, сочетание нескольких резцов. Шлифовальный круг тоже многорезцовый инструмент, он состоит из множества мелких режущих частиц, скрепленных связующим веществом. И каждая такая частица - миниатюрный резец.

Успех применения многолезвийного инструмента привел конструкторов к мысли: а почему бы не поставить два резца и не удвоить таким образом число режущих лезвий? Так появились многоинструментальные металлорежущие станки. В суппорте токарного станка стали устанавливать по нескольку резцов, а затем на противоположной стороне станины поставили второй суппорт, также с несколькими резцами.

Теперь количество инструментов, одновременно работающих на станке, иногда измеряется сотнями. Однако беспредельно увеличивать число одновременно работающих инструментов нельзя -обрабатываемое изделие и станок не выдержат нагрузки. Да и обслуживание такого станка слишком сложно. Тогда стали делать многопозиционные станки. На них одновременно можно обрабатывать несколько изделий в разных позициях.

Можно повысить производительность станка и другим путем - его специализацией. Вот один пример. Коробка скоростей токарного станка имеет сложную конструкцию. Сравните: у автомобиля коробка скоростей позволяет получить 3-4 скорости, а у станка - 24! Предположим, этот станок дает массовую продукцию - обтачивает пальцы поршня автомобильного двигателя. Их надо обточить сотни, тысячи. Станок ничего другого не делает. Для этого из 24 скоростей выбрали одну, наиболее подходящую. А остальные 23 скорости? Пропадают! Поэтому для заводов массового производства делают специальные станки, предназначенные для выполнения лишь одной определенной операции. Такой станок проще универсального: вместо 24 скоростей у него одна. Его легче обслуживать, он дешевле, а главное, производительнее.

Специальный станок работает великолепно, но... до поры до времени. Все хорошо, пока завод выпускает машину, на производство которой этот станок расiитан. Прошло время, получено задание выпускать новую, усовершенствованную машину. Станок необходимо переделывать, а то и заменять. Придется менять станочный парк, а это сложно и дорого!

Получается, что высокопроизводительный специальный станок задерживает технический прогресс. Где же выход? И конструкторы нашли его: надо применять агрегатные станки. Принцип построения таких станков - в создании стандартных узлов - агрегатов. Из этих узлов и конструируется станок. В случае поломок или перехода на выпуск новой продукции узлы легко заменить. Теперь познакомимся с главным резервом повышения производительности станков. Это автоматизация.

С изобретением суппорта процесс резания был механизирован. Время резания значительно сократилось. Но этого мало: на холостые ходы по-прежнему затрачивалось много времени. Надо было ускорить и эту часть операции. Как это сделать? Хорошо было бы, например, совместить во времени два или несколько холостых ходов. Но человек не