Проект электрокотельной ИГТУ
Дипломная работа - Физика
Другие дипломы по предмету Физика
ная нагрузка ZНАГР.ДОП= 0,4 Ом
4. Выбор измерительных трансформаторов напряжения.
Трансформаторы напряжения выбираются по номинальному напряжению UНОМ и по вторичной нагрузке SНОМ2.
1. РУ-6 кВ
На шины 6 кВ выбираем трансформатор напряжения НТМИ666УЗ трансформатор трехфазный, с естественным масляным охлаждением, для измерительных цепей [13].
UНОМ1=6 кВ, UНОМ2=100 В, UНОМ2ДОП = 100 / В,SНОМ2 = 120 ВА
Таблица 3.25. Расчет нагрузки трансформаторов напряжения.
ПриборТипSKAT,
BAчисло кат.cos ?sin ?число приб.РОБЩ., ВтQОБЩ., ВарвольтметрЭ-3352110240ваттметрД-3351,5210130варметрД-3351,5210130счетчик акт. энергииИ-6802 Вт20,380,92510,761,85счетчик реакт. энергииИ-6802 Вт20,380,92510,761,85частотометрЭ-3713110130ИТОГО:14,523,7Полная вторичная нагрузка ТН:
Sр=
SНОМ2 > Sр 120 ВА > 14,98 ВА
Проверка других трансформаторов напряжения по вторичной нагрузке аналогична.
На термическую и динамическую стойкость трансформаторы напряжения не проверяются, так как защищены предохранителем.
2. РУ-220 кВ.
Трансформатор напряжения НКФ 220-58У1 13.
UНОМ = 220 кВ;SНОМ2 = 400 ВА.
5. Выбор ограничителей перенапряжения.
Выбор ограничителей перенапряжения производится по номинальному напряжению установки.
- ОРУ-220 кВ.
Выбираем ОПН 220.У1 [13]
- РУ-6 кВ.
Выбираем ОПН 6.У1 [13]
3.10 Выбор и проверка шин на термическую и электродинамическую стойкости
1. Произведем выбор шин РУ-6 кВ электрокотельной.
Исходные данные:
IРАС = = 4967,9 А.
IП.О. = 13,85 кА;
i У = 34,89 кА;
BK = IП.О.2 • (tЗ + tОТК) = 13,85 2 • (0,1 + 0,095) = 37,4 кА2 • с.
Выбираем шины по условию нагрева. К величине рабочего тока близки алюминиевые четырёхполосные шины, сечением 4(120х10) мм2 с допустимым током IДОП = 5200 А [1].
Проверяем шины на термическую стойкость.
Определяем минимальное допустимое сечение шин:
где ВК тепловой импульс от тока короткого замыкания, А2 • с;
С = 91 тепловой коэффициент для шин из алюминия [7].
Сечение шины S = 480 • 10 = 4800 мм2
S ? SMIN
4800мм2 > 67,2 мм2
Шины термически устойчивы.
Проверяем шины на электродинамическую стойкость.
Сечение шины: h x b = 480 х10 мм2;
h = 0,48 м; b = 0,04 м.
Шины расположены на ребро.
Проверка производится по условию:
РАСЧ ДОП
где РАСЧ максимальное механическое напряжение в материале шин в точке взаимодействия изгибающего момента;
ДОП =82,3 Мпа допустимое максимальное напряжение [7].
Наибольшее усилие, действующее на среднюю фазу:
F = 1,76iУД2 10-7,
где l=750 мм- расстояние между изоляторами одной фазы.
а=250 мм- расстояние между соседними фазами.
iУД-ударный ток в точке К-2
F =1,7634890210-7=642,74 Н
Определяем момент сопротивления динамическому воздействию:
W =
Определяем максимальное механическое напряжение в материале шин в точке взаимодействия изгибающего момента:
М = МПа
ДОП ? М
82,3 МПа > 28,8 МПа
Шины динамическое воздействие выдержат.
3.10.1 ПРОВЕРКА ВЫСОКОВОЛЬТНЫХ КАБЕЛЕЙ НА УСТОЙЧИВОСТЬ К ТОКАМ КОРОТКОГО ЗАМЫКАНИЯ
- Кабель от РУ-6 кВ к асинхронным двигателям.
Кабель ААГУ-6 кВ (3х95)
Определяем минимальное допустимое сечение жилы кабеля по условиям термической стойкости:
С = 95 коэффициент для кабеля с алюминиевыми жилами [7].
S ? SMIN
95 мм2 > 71,1 мм2
Кабель термическое действие тока выдержит.
- Кабель от РУ-6 кВ к КТП.
Кабель ААГУ -6 кВ (3х10)
Минимальное допустимое сечение жилы кабеля по условиям термической стойкости:
S ? SMIN
10 мм2 < 71,1 мм2
Кабель термическое действие тока не выдерживает, поэтому выбираем кабель большего сечения.
Кабель ААГУ-6 кВ (3 х 95). IДОП = 215 А.
95 мм2 > 71,1 мм2
Кабель термическое действие тока выдержит.
- Кабель от РУ-6 кВ до электрокотельной.
Кабель ААГУ -6 кВ 3(3х150)
Минимальное допустимое сечение жилы кабеля по условиям термической стойкости:
S ? SMIN
3х150 мм2 < 71,1 мм2
Кабель термическое действие тока выдержит.
3.11 РАСЧЕТ ТОКА ТРЕХФАЗНОГО КОРОТКОГО ЗАМЫКАНИЯ В СЕТЯХ НАПРЯЖЕНИЕМ ДО 1000 В.
Рис. 2.3
Приводим сопротивления системы электроснабжения высшего напряжения к напряжению 0,4 кВ:
R6/0,4 = R6 • • КТ2 = = 0,0002 мОм
X6/0,4 = X6 • • КТ2 = = 0,003 мОм
Сопротивление цехового трансформатора:
RТ = •106 = 31,5 мОм
XТ = •106 = 20,8 мОм
Удельные сопротивления жилы кабеля АВВГ-1 кВ (3х150 + 1х50):
R0Ф= 0,22 Ом/км;Х0Ф=0,06 Ом/км.[6]
Сопротивление жилы кабеля длиной L1 =0,058 км:
R1Ф = R0Ф • L1=0,22 • 0,058 = 0,012 Ом;
Х1Ф = Х0Ф • L1=0,06 • 0,058 = 0,0034 Ом.
Удельные сопротивления жилы кабеля АВВГ-1 кВ (3х6 + 1х4):
R0Ф= 5,55 Ом/км;Х0Ф=0,09 Ом/км.[9]
Сопротивление жилы кабеля длиной L2 =0,0458 км:
R2Ф = R0Ф • L2=5,55 • 0,0458 = 0,254 Ом.
Х2Ф = Х0Ф • L2=0,09 • 0,0458 = 0,0041 Ом;
Короткое замыкание в точке К-1:
Результирующее сопротивление:
Индуктивное сопротивление:
Х РЕЗ = Х 6/0,4 + Х Т = 0,003 + 20,8 = 20,803 мОм
Активное сопротивление:
R РЕЗ = R 6/0.4 +RТ +RДОБ = 0,0002 +31,5 +15 =46,5002 мОм
где RДОБ = 15 мОм переходное сопротивление контактов [24]
Результирующее полное сопротивление:
Z РЕЗ = = 50,9 мОм
Значение тока короткого замыкания в точке К-1:
Ударный ток короткого замыкания:
iУ К-1 = • КУ ?/p>