Аналіз стійкості процесів в нелінійній схемі

Контрольная работа - Компьютеры, программирование

Другие контрольные работы по предмету Компьютеры, программирование

 

 

 

 

 

 

 

 

 

 

 

 

 

Контрольна робота з теми:

АНАЛІЗ СТІЙКОСІ ПРОЦЕСІВ В НЕЛІНІЙНІЙ СХЕМІ

1. Основні поняття теорії стійкості

 

Будемо розглядати стійкість двох станів нелінійних схем періодичного режиму та положення рівноваги.

В положенні рівноваги схема знаходиться при вимкненій зовнішній дії, але при збережені джерел постійної напруги. Отже, в положенні рівноваги в елементах схеми протікають тільки постійні струми і на елементах діють лише постійні напруги. Цей стан має бути нестійким в автогенераторі і, навпаки, стійким в підсилювачі, помножувачі частоти та інших подібних пристроях.

Нагадаємо, що означає стійкість якого-небудь стана системи. Щоб вирішити стійкий виділений нами стан, треба вивести систему з нього і прослідкувати за її поведінкою. Якщо з часом система повернеться до початкового стану, або приблизиться до нього, то цей стан зветься стійким, або по-іншому стійким за Ляпуновим. Якщо з часом система віддаляється від початкового стану, то його звуть нестійким.

Прийнято наступну термінологію. Початковий стан системи отримав назву незбудженого руху. Процес, протікаючий в системі після того, як вона виведена з початкового стану, зветься збуреним рухом. Різницю між вказаними рухами назвали збуренням. Очевидно, при стані, стійким по Ляпунову, збурення протягом часу не зростають, при асимптотичній стійкості прямує до нуля, а при нестійкому зростають. Таким чином, для аналіза стійкості треба знати поведінку збурень. Складність задачі про їх поведінку визначається початковими значеннями збурень довільне воно або мале порівняно з шуканим рухом. У звязку з цим стійкий стан, знайдений при довільному, але кінцевому відхиленню від нього, звуть стійким в великому. Стійкий стан, отриманий при малому відхиленні від початкового руху, звуть локально стійким (стійким в малому).

Знайдемо рівняння, якому підпорядковані збурення

. (1)

 

Нехай - стаціонарний стан, стійкість якого досліджується. При маємо положення рівноваги, а при - періодичний режим. Запроваджуючи збурення , запишемо збурений рух

 

. (2)

 

Підставимо (2) в (1) і врахуемо, що - рішення (1):

 

(3)

 

Отримаємо, що довільні збурення описуються автономним (без правої частини) нелінійним диференційним рівнянням. Нелінійність рівняння зберігається при усякому шуканому стані положенні рівноваги або періодичному режимі.

Розглянемо малі збурення, для яких справедливі умови . Це дає можливість нелінійну функцію з (3) розкласти в ряд по ступеням малих відхилень, обмежуваючись двома першими членами,

 

,

.

 

Підстановка в (3) дає

(4)

 

Тут квадратні дужки вказують на те, що похідні беруться при .

Коли , то , - диференційна провідність і ємність в робочій точці нелінійних елементів. Якщо , то , .

Таким чином, малі збурення описуються лінійним диференційним рівнянням, коефіцієнти якого постійні в випадку, коли розглядається стійкість положення рівноваги, і виявляються періодичними функціями часу для збурень періодичного процесу.

Очевидно, що для виділених станів схеми аналіз стійкості у великому найбільш складний, оскільки він звязаний з рішенням диференційного рівняння. Наступним за складністю буде вивчення локальної стійкості періодичного режиму, а самим простим аналіз локальної стійкості в малому, або в великому важливо при схемотехнічному проектуванні розглядених вузлів.

В автогенераторі положення рівноваги повинно бути нестійким, тому можна обмежитися вивченням локальної стійкості. Той самий стан в підсилювачі потужності і подібних схемах повинен бути стійким. В ході налагодження таких вузлів відхилення від стана рівноваги може і не бути малим. Тому необхідний аналіз стійкості в великому.

Періодичний режим в схемах, де він є робочим, повинен бути стійким, причому бажано, щоб стійкість збереглася і при великих відхиленнях. Стійкість періодичного режиму в великому можливо замінити вимогами про існування в схемі єдиного періодичного режиму. Нелінійні схеми, наділені вказаними властивостями, звуть конвергентними.

Зясуємо характер стійкості, котрий нас цікавить у розгляданих схемах, розглянемо питання, як доцільно проводити аналіз.

Насамперед відмітимо, що критерії конвергентності встановлені лише для кіл з нелінійними опорами. Їх в загальному випадку не можна розповсюджувати на схеми, в яких є нелінійні ємності та індуктивності. Далі, якщо встановлена стійкість положення рівноваги в великому, наприклад, в підсилювачі потужності, то це не гарантує навіть локальної стійкості періодичного режиму.

Прийнявши до уваги викладене, а також складність вивчення стійкості положення рівноваги в великому, приходимо до висновку: на сьогодення змушені обмежиться аналізом стійкості в малому. Це не дозволяє стверджувати, що в проектуємій схемі не виникають ніякі паразитні ефекти. Останнє примусить нас робити в ряді випадків деякі додаткові обчислення. Наприклад, встановити, чи виходить підсилювач потужності із положення рівноваги в періодичний режим при подачі на вхід схеми зовнішнього сигналу.

 

2. Методи аналізу стійкості положення рівноваги

 

Малі збурення положення рівноваги описуються лінійним диференційним рівнянням з постійними коефіцієнтами. Так отримаємо

 

. (5)

 

Тут - малі збурення, , - диференційн